

Using Multiple Kinds of Markers and Hand
Gesture to Enhance User Interactions in

Marker-Based AR System

Xitong Sun

44181573-5
Master of Engineering

Supervisor: Prof. Jiro Tanaka

Graduate School of Information, Production and Systems Waseda
University

July 2020

I

Abstract

Nowadays, AR (augmented reality) technology is increasingly popular among people.

Many AR applications are used in people’s daily life.

Markers are visual cues can be used in AR system. Some markers can be used to trigger

some AR content, and we call them AR marker. Some markers can just provide some

information. We call a system that uses AR marker to display AR content and other

markers to provide control information as marker-based AR system.

Hand gesture is a popular way for human interactions. It is widely used in AR system.

Users can use his hand gesture to interact with virtual content.

In current marker-based AR system, different markers are usually independent of each

other and users lack intuitive interactions with virtual content or the system.

In this research, we propose a marker-based AR system which combines multiple kinds

and numbers of markers and hand gesture together for some interactions. And we propose

virtual markers which can be combined with real markers for visual programming and

some other interactions. Based on the framework of our system, we make some

applications.

Keywords: Augmented Reality, Multiple Markers, Hand Gesture, Virtual Marker, Visual

Programming

II

Acknowledgement

I would like to express my sincere gratitude to my supervisor, Professor Tanaka. In the

past two years, I have learnt a lot from Professor. Thanks to his guidance and advice, I

have made some progress. In the process of master thesis, I encountered a lot of

difficulties, and even stopped for a while. Professor gave patient guidance and provided

many useful comments, which helped me a lot for my work. I am really honored to have

the opportunity to spend these two years as a student of Professor Tanaka.

I also want to express my gratitude to all members of IPLAB. I learned a lot from them.

In the process of master thesis, I get some advice and comments from them, which are

really helpful.

Special thanks to my parents. They always supported me when I was in trouble, which

really encourage me a lot.

Thanks to WASEDA University and IPS for providing this excellent working conditions

for these two years.

III

Table of Contents
List of figures .. VII

Chapter 1 ... 1

Introduction ... 1

1.1 Introduction ... 1

1.2 Organization of the thesis .. 1

Chapter2 .. 2

Background ... 2

2.1 Augmented Reality .. 2

2.2 Visual Markers .. 2

2.3 Hand Gesture Interactions ... 2

Chapter3 .. 4

Research Goal and Approach .. 4

3.1 Problem ... 4

3.2 Goal ... 4

3.3 Approach ... 4

Chapter4 .. 5

Related Work ... 5

4.1 Combining Multiple Markers .. 5

4.2 Hand Gesture Recognition .. 5

4.3 Visual Programming .. 6

Chapter5 .. 7

System Design ... 7

5.1 System Overview .. 7

5.2 Multiple Kinds of Markers .. 8

5.2.1 NFT (Nature Feature Tracking) Marker ... 8

5.2.2 3D Object Marker .. 9

IV

5.2.3 ATK (ARToolkit) Marker ... 10

5.2.4 ArUco Marker .. 10

5.2.5 QR (Quick Response) Code ... 11

5.2.6 Hide Marker ... 11

5.2.7 Combining Multiple Markers Information ... 12

5.3 Hand Gesture ... 13

5.3.1 Hand Information Acquisition .. 13

5.3.2 Hand Gesture Recognition ... 14

5.3.3 Hand Gesture Interaction ... 15

5.4 Interactions with Multiple Markers and Hand Gesture ... 15

5.4.1 Combining Multiple Markers and Hand Gesture ... 16

5.4.2 Interactions with Multiple Markers and Hand Gesture 17

5.5 Visual Programming with Multiple Markers and Hand Gesture 18

5.5.1 Markers Sequence .. 18

5.5.2 Grammar Structure and Markers Design ... 19

5.6 Virtual Marker ... 25

5.6.1 Generating Virtual Marker ... 26

5.6.2 Manipulating Virtual Marker ... 26

5.6.3 Combining Virtual Markers and Real Markers .. 28

5.7 Example of Applications ... 28

5.7.1 Virtual Timer .. 28

5.7.2 Hide Marker Controller .. 31

5.7.3 Controlling AR Content with Hand Gesture .. 35

5.7.4 Visual Programming – Fibonacci Sequence ... 36

5.7.5 Visual Programming – Controlling AR Content .. 39

Chapter6 .. 42

System Implementation ... 42

6.1 System Hardware .. 42

V

6.1.1 Web Camera and Tripod ... 42

6.1.2 PC ... 43

6.1.3 Leap Motion ... 43

6.2 Development Environment ... 44

6.3 Multiple Markers Recognition .. 44

6.3.1 NFT (Nature Feature Tracking) Marker Recognition 44

6.3.2 3D Object Marker Recognition .. 46

6.3.3 ATK (ARToolkit) Marker Recognition .. 47

6.3.4 ArUco Marker Recognition .. 48

6.3.5 QR Code Marker Recognition ... 48

6.3.6 Hide Marker Configuration .. 49

6.3.7 Multiple Markers Combination .. 50

6.4 Hand Gesture Recognition .. 50

6.4.1 Environment Configurations .. 51

6.4.2 Hand Shape Recognition .. 51

6.4.3 Hand Motion Detection .. 55

6.4.4 Hand Gesture Recognition ... 56

6.5 Visual Programming with Multiple Markers and Hand Gesture 58

6.5.1 Markers Sequence Recognition .. 58

6.5.2 Execution of Visualization Function .. 59

6.6 Virtual Marker ... 59

6.6.1 Virtual Marker Modeling ... 59

6.6.2 Generating Virtual Marker in Scenery ... 60

6.6.3 Manipulations of Virtual Marker .. 60

6.6.4 Visual Programming with Virtual Markers and Real Markers 61

Chapter7 .. 62

Preliminary Evaluation .. 62

7.1 Questionnaire .. 62

VI

7.2 Result and Analysis ... 63

7.3 Summary ... 64

Chapter8 .. 65

Conclusion and Future Work ... 65

8.1 Conclusion ... 65

8.2 Future Work ... 66

Reference ... 67

VII

List of figures
Figure 1 System Overview .. 7
Figure 2 An NFT marker which contains enough feature points 9
Figure 3 A 3D object marker which contains enough feature points 9
Figure 4 An example of ATK marker with a black frame and central image 10
Figure 5 An example of ArUco marker with a sole id number 2 10
Figure 6 An example of QR code which contains an URL in marker 11
Figure 7 An example of hide marker definition .. 12
Figure 8 Leap Motion is connected to PC when working ... 13
Figure 9 Framework of hand gesture recognition ... 14
Figure 10 The static fist hand shape .. 14
Figure 11 Virtual cars and virtual hand Motion in one scenery 16
Figure 12 Framework of interactions with markers and hand gesture 17
Figure 13 Marker 1 to Marker 8 are arranged in 2 lines ... 18
Figure 14 Variable X marker and variable Y marker .. 19
Figure 15 Constant marker .. 20
Figure 16 Hide marker for numbers input ... 20
Figure 17 AR number on variable marker ... 20
Figure 18 Numbers input with pairing .. 21
Figure 19 Markers to define loop structure for visual programming 22
Figure 20Left hand defining gesture ... 22
Figure 21 If-Condition definition .. 23
Figure 22 Then definition and else definition ... 23
Figure 23 Define if-then-else structure for visual programming 24
Figure 24 Function structure definition markers ... 24
Figure 25 Right hand defining gesture .. 25
Figure 26 Action markers to control AR content .. 25
Figure 27 Touching real marker to generate its virtual marker 26
Figure 28 Hand gesture to control virtual markers ... 27
Figure 29 Using finger ray to select virtual makers in AR scenery 27
Figure 30 Four number markers to show AR numbers of the time 29
Figure 31 Semicolon markers to show AR semicolon .. 29
Figure 32 Virtual timer using multiple markers .. 30
Figure 33 Hand gesture to control the timer ... 30
Figure 34 AR markers to generate virtual cars .. 32

VIII

Figure 35 Hide marker controller to control virtual cars .. 32
Figure 36 QR code to change material of the virtual car .. 33
Figure 37 Hand gesture for pairing input and output .. 33
Figure 38 Some visual clues for pairing input and output .. 34
Figure 39 Hand gesture to control AR content .. 35
Figure 40 If marker definition ... 36
Figure 41 Then marker definition ... 37
Figure 42 Else marker definition ... 37
Figure 43 Fibonacci Function marker definition ... 38
Figure 44 Makers for visual programming with Fibonacci function marker 38
Figure 45 Executing gesture for markers sequence .. 39
Figure 46 Executed outcome of markers sequence ... 39
Figure 47 Combining action marker and grammar structure .. 40
Figure 48 Next step gesture ... 41
Figure 49 Logicool HD Pro Webcam c920r .. 42
Figure 50 Velbon EX-Mini S .. 42
Figure 51 TOSHIBA PC .. 43
Figure 52 Leap Motion .. 43
Figure 53 Vuforia Target Manager .. 44
Figure 54 Importing Vuforia database to Unity .. 45
Figure 55 NFT markers configurations in Unity ... 45
Figure 56 AR content on an NFT marker .. 45
Figure 57 3D object scanning information in a smartphone ... 46
Figure 58 AR content around an 3D object marker .. 46
Figure 59 Register an ATK marker in the database ... 47
Figure 60 AR number on an ATK marker ... 47
Figure 61 Red AR cube on an ArUco marker ... 48
Figure 62 Recognized information from QR code shown on UI 48
Figure 63 ZXing API used in the recognition C# script .. 49
Figure 64 Virtual Button Area on NFT marker ... 49
Figure 65 Virtual Button Behavior script .. 49
Figure 66 C# Script to combine multiple markers information together 50
Figure 67 Virtual hands in Unity 3D Scenery ... 51
Figure 68 Hand shapes in the system .. 52
Figure 69 Fingertips, palm and wrist position on hand ... 54
Figure 70 Hand shape prediction outcome shown on Console window 55

IX

Figure 71 Current palm velocity data shown on Console window 56
Figure 72 Finger ray from virtual hand ... 57
Figure 73 ATK markers position in Unity scene view .. 58
Figure 74 Executed code saved in .txt file .. 59
Figure 75 Real Marker and its corresponding virtual marker ... 60
Figure 76 Questionnaire for participants ... 62
Figure 77 Results from participants .. 63

1

Chapter 1

Introduction
1.1 Introduction
Augmented reality (AR) is a live real-world environment whose elements are augmented

by computer-generated sensory input such as sound, video, graphics or GPS data [1].

AR markers are images that can be detected by a camera and used with software as the

location for virtual content placed in a real scene [2].

There are many kinds of visual markers. Some of them can be used as AR marker, for

example, ARToolkit marker, and some of them can be used only to provide some

information, for example, QR code.

We call a system that uses AR marker to display AR content and other markers to provide

control information as marker-based AR system.

Hand gesture is a popular way for human interactions [3]. It is widely used in AR and VR

system. Users can use his hand gesture to interact with virtual content.

In this research, we will combine multiple markers and hand gesture in marker-based AR

system for interactions. We can use multiple markers and hand gesture for visual

programming and some other interactions. Based on the framework, we can make some

applications of our system.

1.2 Organization of the thesis
The rest of the thesis is organized as follows: Chapter 2 will talk about the background of

the thesis. Chapter 3 will tell research goal and approach. Chapter 4 will be about some

related works. Chapter 5 will introduce the design of our system. Chapter 6 will be about

the implementation of the system. In Chapter 7, we will make some preliminary

evaluation of the system. And in Chapter 8, we will make some conclusions of our

research.

2

Chapter2

Background
2.1 Augmented Reality
Augmented Reality is a technology that supplements the real world with virtual

information that appears to coexist in the same space as the real world [4].

In AR scenery, we can combine virtual object and real environment. And we can make

some real-time interactions with virtual content [5].

Now augmented reality technology is gradually becoming more and more popular. AR is

also used in many fields, for example, education [6], commerce [7], collaboration [8] and

social use [9].

There are many kinds of AR. Some are based on GPS location [10], some are based on

plane recognition [11] and some are based on visual markers. In our research, we focus

on marker-based AR system.

2.2 Visual Markers
Visual markers are widely used in marker-based AR system. Markers can be tracked and

recognized with Web camera. If the visual marker serves as AR marker, it can be used to

display some virtual content [12]. And visual markers can also provide some information

to the system for some interactions, for example, QR code.

There are many kinds of visual markers. In this research, we will use nature feature

tracking marker, ARToolkit marker, ArUco marker, 3D object marker and QR code

marker for interactions and further application.

2.3 Hand Gesture Interactions
With the development of human-computer interaction technology, how to use natural and

efficient interaction methods in the virtual environment has become a hot topic of research.

Hand gesture is one of the most important interaction methods of human, which can

3

effectively express users’ intentions [13].

Hand gesture is a mode of non-verbal interaction medium and can provide the most

intuitive, originative and natural way to interact with computers. It can make the

interaction between human and computer as natural as the interaction between humans

[14].

Hand gesture is popular in AR field. HoloLens uses some hand gesture for interactions

with the machine. Leap Motion are also widely used in some AR applications for human

interactions with AR world.

Using hand gesture in AR system can make the interactions natural and intuitive. With

hand gesture, users can get started with the AR system more conveniently.

4

Chapter3

Research Goal and Approach
3.1 Problem
There are some problems of current marker-based AR system.

1. Different markers are usually independent of each other and their information lacks

interaction with each other.

2. There are little interactions between hand gesture and markers.

3. Users lack intuitive interactions with AR content or the system.

With these problems, users have limited interactions with marker-based AR system.

However, interactions are important for users experience for an AR system.

3.2 Goal
To solve current problems, our research goal is to combine multiple kinds and numbers

of markers and hand gesture together for more intuitive interactions in marker-based AR

system.

3.3 Approach
Firstly, we need to recognize and combine multiple kinds and numbers markers

information together.

Secondly, we need to introduce hand gesture in marker-based AR system.

After the first step and second step, we need to combine multiple markers and hand

gesture together and make some interactions with virtual content and the system.

Finally, we can use them for some applications.

5

Chapter4

Related Work
4.1 Combining Multiple Markers
We need to combine multiple markers and make them work together.

In Fang’s work [15], he provides some ways to combine multiple markers to control some

AR content. However, in his work, control method is simple and markers function are

limited.

In Tada’s work [16], he combines multiple ARToolkit markers for control as visual

programming. However, in his work, markers can only be put in one-dimension, which

will be limitation for relatively complex functions.

Fang’s work and Tada’s work provides some possibilities to combine multiple markers

information. In this research, we will use multiple markers for control or some other

functions. Markers will be put with some sequence in two-dimension and will work as

visual programming with relatively complex functions.

4.2 Hand Gesture Recognition
We need to introduce hand gesture in marker-based AR system. Therefore, we need to

recognize user’s hand gesture in real time.

Leap Motion is a popular device which can be used to detect user’s hand information and

return some data for processing and analysis.

In Lu’s work [17], she classifies hand gesture with 3 levels, and provides some good ways

to recognize user’s hand gesture in real time for some interactions in VR.

Zeng’s work [18] provides some ways to use Leap Motion for Hand Gesture Recognition.

Michahial’s work [19] provides some possibilities to use SVM for hand gesture

recognition, but for dynamic hand gesture, there will still be some limitations. And Filho’s

work [20] talks about hand gesture recognition with Unity Engine.

In this research, we will use Leap Motion and SVM for hand gesture recognition in AR

6

scenery, and there will be some static and dynamic hand gesture for interactions with

virtual content or the system.

4.3 Visual Programming
We will use multiple markers and hand gesture for visual programming.

Tada’s work [16] provides some ways to use some visual markers for visual programming,

which can be used for control. His framework includes loop structure and branch structure.

However, in his work, there is no function structure for visual programming. And

Numbers expression is not enough.

Rose’s work [21] provides some simple visual programming examples. However, in the

examples, grammar structure for visual programming is still simple, which is not enough

for relatively complex operations.

In this research, we will use multiple visual markers and hand gesture together for visual

programming. The framework will include function structure, which means we can make

some relatively complex operation for control. With the framework, we can make some

applications.

7

Chapter5

System Design
In this chapter, we will introduce design of our system. Firstly, we will introduce the

overview of the system. Our system mainly contains 2 parts, multiple kinds of markers

interactions and hand gesture interactions. And then, we will introduce about these 2 parts

separately. After that, we will introduce some interactions with multiple markers and hand

gesture, and some applications of our system.

5.1 System Overview
In our system, we use multiple kinds and numbers of markers and hand gesture together

to make some interactions with virtual content in AR world [Figure 1].

Figure 1 System Overview

For multiple kinds of markers, in our system, we can combine some of NFT (Nature

Feature Tracking) marker, 3D object marker, ARToolkit marker, ArUco marker and QR

code together to make some interactions. As a first step to use these markers together, we

need to track and recognize them with Web camera. And after data processing, we can get

8

markers information from them. We need to combine information of these markers for

some interactions.

For hand gesture, we need to define and recognize some hand gestures. To detect and

recognize hand gesture, we need to use Leap Motion as a deep sensor to track user’s hand.

The recognized hand gesture can be used for some interactions with AR content or

markers. The hand gesture definition should be explicit and easy to make by users.

As a next step, we can combine multiple markers and hand gesture together, and use them

to make some interactions with AR content.

Our system can be used for some applications, for example, visual programming, virtual

timer and AR content controlling. We will introduce them in the following sections.

5.2 Multiple Kinds of Markers
In our system, we will use multiple kinds and numbers of markers for interactions. They

are NFT marker, 3D object marker, ARToolkit marker, ArUco marker and QR code. We

need to recognize them and combine their information together for some interactions with

AR content.

5.2.1 NFT (Nature Feature Tracking) Marker

NFT marker is a kind of 2D image marker. It uses nature feature points of the image as

basis of tracking and recognition. Every 2D image can serve as NFT marker only if it has

enough nature feature points for tracking [Figure 2]. In our system, we mainly use NFT

markers as AR marker, which means we mainly use it to show some AR content we want

to interact or control on the marker.

There are many ways to track NFT marker. In our system, we mainly choose to use

Vuforia Engine to help us track and recognize NFT marker.

9

Figure 2 An NFT marker which contains enough feature points

5.2.2 3D Object Marker

3D object marker is a kind of 3D marker. 3D object marker has a similar recognition

method to NFT marker. It uses nature feature points of an object as the basis of tracking

and recognizing. We also mainly use 3D object marker as AR marker to show some AR

content.

A good 3D object marker for tracking also need enough nature feature points. So, we need

to choose some objects containing many points to serve as marker [Figure 3].

In our system, we use Vuforia Engine to track 3D object marker.

Figure 3 A 3D object marker which contains enough feature points

10

5.2.3 ATK (ARToolkit) Marker

ATK marker is a kind of 2D marker. It uses its black frame for tracking and its central

image for recognition [Figure 4]. ATK marker can show its content explicitly through the

central image designed by user. In our system, we mainly use ATK marker to provide

some control information for AR content.

We use ARToolkit SDK to help us track and recognize ATK marker.

Figure 4 An example of ATK marker with a black frame and central image

5.2.4 ArUco Marker

ArUco marker is a kind of 2D marker. It is tracked with a sole id number [Figure 5]. Its

recognition way is similar to ATK marker. We can use ArUco marker to serve as AR

marker, and we can also use it to provide some control information in our system.

We use ArUco SDK to help us track and recognize ArUco marker in our system.

Figure 5 An example of ArUco marker with a sole id number 2

11

5.2.5 QR (Quick Response) Code

QR code is a kind of 2D marker. It can contain some information such as an URL in

marker [Figure 6]. In our system, we use it to contain some control information which

can be used to interact with AR content.

Figure 6 An example of QR code which contains an URL in marker

We use ZXing API to help us read and recognize QR code.

5.2.6 Hide Marker

Hide marker is a kind of NFT marker. It also uses its nature feature points for tracking

and recognizing. However, it has some special features comparing to traditional NFT

markers.

If some part of a hide marker is blocked, the system can return some response. The user

can define the hide part by himself. And a hide marker also can contain many hide parts

for multiple response. [Figure 7] shows an example of hide marker definition. The image

is the NFT marker, and the blue square parts on it are user defined hide parts. After

definition, the marker can serve as hide marker. If the user blocks the hide parts in the AR

camera view, the system will give some response.

12

Figure 7 An example of hide marker definition

We can use the feature of hide marker to make some input in our system. We can touch

different part of a hide marker for different input and output, and we can also touch

multiple parts of a hide marker for a multiple input to the system. With hide marker, we

can make more input to the system with just one marker. It will save markers space that

using one marker to replace a series of markers as the input.

With hide marker, we can make more interactions in our system.

We will use Vuforia Engine to help us to define and recognize hide markers. With some

scripts, we can define many functions on a hide marker.

5.2.7 Combining Multiple Markers Information

Combining multiple kinds and numbers of markers together, we can make more

interactions with AR content.

Using different kinds of SDK and API, we can recognize different kinds of markers

respectively. As a next step, we need to combine these SDK or API in one Unity scenery

for use. To make them work together, we need some scripts to manage them and combine

recognized information from them. And after that, we can get the combined information

from multiple markers and we can use the information for interactions with AR content.

For combined multiple markers, some markers will serve as input markers and some will

serve as output markers. In our system, output marker will be AR marker. It can show

13

some AR content which is used for interactions. And other markers will be used as input

markers. We can use them to provide some information as input to control or make some

interactions with AR content shown on AR marker.

5.3 Hand Gesture
In our system, we will use hand gesture for some interactions. To detect and recognize

user’s hand gesture, we need to collect user’s hand information and process them for some

analysis. After that, we can use the recognized hand gesture to make some interactions

with markers or AR content.

5.3.1 Hand Information Acquisition

As the first step to use hand gesture, we need to collect user’s hand information for

recognition and interactions.

We will use Leap Motion as the sensor to detect and track user’s hand information in real

time. Leap Motion can detect hand shape and motion information for every frame, and

the information can be used for hand gesture recognition and interactions after data

processing.

In our system, Leap Motion will be linked to PC through USB cable [Figure 8]. The hand

information detected by Leap Motion will be transported to PC for further use.

Figure 8 Leap Motion is connected to PC when working

14

5.3.2 Hand Gesture Recognition

After we access hand information from Leap Motion, we need to process and analyze the

information for hand gesture recognition.

To recognize user’s hand gesture, we separate hand gesture to 2 parts, static part and

dynamic part [Figure 9]. The static part is the shape of hand, which also means how does

the hand look like, for example, a fist hand [Figure 10] or an open hand. The dynamic

part is the state of hand movement, for example, the hand palm movement velocity or the

direction of the fingers. We can analyze these 2 parts separately. After that, we can

combine the analysis outcome of these 2 parts to decide the gesture of user’s hand.

Figure 9 Framework of hand gesture recognition

Figure 10 The static fist hand shape

15

For hand shape analysis, we can get the position information of fingers, palm and wrist

of user’s hand from Leap Motion. Based on the position information, we can user Multiple

Class SVM as the classifier to recognize and classify different kinds of hand shapes.

For hand movement analysis, we can also access the hand motion information from Leap

Motion, for example, the palm velocity, the palm direction and the finger direction. After

some analysis, we can judge the hand movement statement from the motion information.

After static and dynamic analysis, we can combine these 2 parts to analyze the current

hand gesture state of user’s hand. With the recognized hand gesture, we can make some

interactions with markers or AR content.

5.3.3 Hand Gesture Interaction

After hand gesture recognition, we can design some interactions with the hand gesture.

In our system, there are mainly 2 kinds of hand gesture interactions. They are:

(1) Using hand gesture to interact with AR content.

(2) Using hand gesture to interact with markers.

We can use hand gesture to interact with AR content. For example, we can use hand

gesture to control AR content’s size and position, or we can choose some AR content with

hand gesture for some effects. To interact with AR content, we need to match hand gesture

to its effect on AR content.

We can also use hand gesture to interact with markers. In our system, there are multiple

kinds and numbers of markers. We can use hand gesture to interact with them to combine

multiple markers and hand gesture together, which will bring more functions and

interactions in our system.

With hand gesture, the interactions in the system will be natural and easy to use.

5.4 Interactions with Multiple Markers and Hand Gesture
In our system, we will combine multiple markers and hand gesture together for some

interactions between user and AR world.

After multiple markers recognition and hand gesture recognition, we can use multiple

markers and hand gesture in our system. With some configurations, we can combine

16

multiple markers and hand gesture in a scenery and make some interactions. Based on

this, we can design some applications of our system.

5.4.1 Combining Multiple Markers and Hand Gesture

With multiple markers recognition, we can combine multiple markers information in the

system and use it for some interactions.

With hand gesture recognition, we can recognize user’s hand gesture in the system for

some interactions.

We can combine multiple markers recognition and hand gesture recognition in one system

with their SDKs and some configurations. After that, we can use both markers and hand

gesture for interactions in one scenery. [Figure 11] shows an example of combining

multiple markers and Leap Motion. In the AR camera view, we can see virtual cars

generating from markers and virtual hand generating from Leap Motion, which are

combined in one scenery. The virtual hand can make some gestures, which can be

recognize with hand gesture recognition in the system. In this case, we can combine

markers and hand gesture together.

Figure 11 Virtual cars and virtual hand Motion in one scenery

17

5.4.2 Interactions with Multiple Markers and Hand Gesture

To make some interactions in our system, we need to correlate the control information of

markers and hand gestures with some responses of AR content or the system. Based on

different applications or user case, we can design different responses and interactions.

The overall design idea of this part is shown in [Figure 12]. We can get markers

information with multiple markers recognition. And we can get current hand gesture

information of user with hand gesture recognition. After that, we can get the interaction

information in the system based on the combined markers information and hand gesture

information. With the interaction information, we can control or interact with AR content

in the scenery or some output of the system.

Figure 12 Framework of interactions with markers and hand gesture

For different application or user case, we can design different interactions with AR

content or the system, and we can also use different markers and hand gesture. In the

following sections, we will introduce some applications of our system and the design of

them.

18

5.5 Visual Programming with Multiple Markers and Hand

Gesture
We will use multiple markers and hand gesture for visual programming. Each marker will

contain some information, and multiple markers will be put with some sequence in the

scenery. A series of markers will serve as a visualization program, and we can execute the

program for some output in the system.

We have some language grammar structure for visual programming, for example, loop

structure or function structure. With these structures, we can make some relatively

complicated operations.

And the program defined by multiple markers can be executed for some output.

5.5.1 Markers Sequence

A series of markers will serve as a visualization program.

We will put multiple markers in 2-dimension with some lines. For each line, markers will

be put from left to right. And markers lines will be put from up to down. Markers sequence

for visualization program will be from left to right and line by line. In [Figure 13], there

are 8 markers put in 2 lines. And for each line, there are 4 markers put from left to right.

The markers sequence for them will be marker 1-2-3-4-5-6-7-8.

Figure 13 Marker 1 to Marker 8 are arranged in 2 lines

19

Markers sequence represents the logic of visualization program. Therefore, markers

recognition sequence and execution sequence will be same as markers arranging sequence.

5.5.2 Grammar Structure and Markers Design

For visual programming, we have some language structure. And we will design some

markers for these grammar structure.

Sequence Structure

For sequence structure, markers will be recognized and executed one by one as markers

sequence we have defined. And there will not be some special markers for grammar

structure.

Variable and Number

For visual programming, we may need some variable for use. Therefore, we designed

variable markers [Figure 14], which can serve as a variable in the system and can contains

some number for use.

Figure 14 Variable X marker and variable Y marker

We will also use numbers for visual programming. In this application, we use constant

marker [Figure 15] to save some number, and we can assign numbers to variable marker

or constant marker with hide marker [Figure 16]. By touching hide marker, we can input

some numbers to the system, and the system will assign the input numbers to the variable

marker or constant marker.

20

Figure 15 Constant marker

Figure 16 Hide marker for numbers input

Variable marker and constant marker will show their value with an AR number on the

marker [Figure 17]. We can check their value through Web camera.

Figure 17 AR number on variable marker

21

For numbers input, if there are more than one variable markers in the scenery, we can use

hand gesture to pair the hide marker and variable marker that we want to assign the value

[Figure 18]. The selected marker will be covered with red highlight and the paired

markers will be linked with virtual line. With the pairing, we can make numbers input

explicitly.

Figure 18 Numbers input with pairing

Variable and numbers are the basis of functions structure in this application. With variable

markers and numbers input, we can use variable and numbers for visual programming.

Loop Structure

Loop structure is a basic grammar structure for programming language. We will also

include loop structure in visual programming.

We will use loop marker and some other markers to define the loop structure for visual

programming [Figure 19]. The loop marker is used in the beginning of the loop structure

definition. Variable X marker is used to define the loop time with its value. We can put a

series of markers after variable X marker to define the loop body.

22

Figure 19 Markers to define loop structure for visual programming

After arranging markers for loop structure, we can make left hand defining gesture

[Figure 20] to define the loop structure. After definition, the loop structure information

will be saved in loop marker. And we don’t need variable marker and loop body markers

anymore. We can use loop marker to replace the whole loop structure for use.

Figure 20Left hand defining gesture

Branch Structure

We will include if-then-else branch structure for visual programming.

We will use if marker, then marker and else marker to define the branch structure. To

simplify if-then-else structure definition, we will define if-condition struct, then struct

and else struct separately and combine them as the branch structure.

We will use a series of markers to define if-condition struct [Figure 21]. We will use a

23

series of markers to define the condition for the branch structure, and with left hand

defining gesture, we can define the condition information in if marker. After definition,

we can use only if marker to replace these markers.

Figure 21 If-Condition definition

With same ways of definition, we can define then struct and else struct with a series of

statement markers [Figure 22]. With left hand defining gesture, we can use then marker

and else marker to replace a series of markers for definition.

Figure 22 Then definition and else definition

After definition of if marker, then marker and else marker, we can combine them to form

the if-then-else structure for visual programming [Figure 23].

24

Figure 23 Define if-then-else structure for visual programming

Function Structure

We will include function structure for visual programming.

We will use a function marker as the function name and use a series of markers to define

the function body [Figure 24].

Figure 24 Function structure definition markers

With right hand defining gesture [Figure 25], we can save the function information in

function marker. After that, we can use only one function marker to replace a series of

25

markers for function definition.

Figure 25 Right hand defining gesture

Action Markers

We can use some markers to control the AR content to do some actions. We call them

action markers. In this application, we have some action markers [Figure 26]. They will

make the human-like AR content do running action, jumping action and walking action

separately.

Figure 26 Action markers to control AR content

These markers can be combined with grammar structure markers to make AR content do

a series of actions as the program.

5.6 Virtual Marker
In this application, we propose virtual markers.

Virtual markers are markers which only can be seen through AR camera, but can work

with real markers together. we can put multiple real markers and virtual markers in an AR

scenery. When the system is running, information from real markers and virtual markers

will be combined for interactions or some control.

26

Virtual markers will also have the same appearances to real markers. Therefore, they can

be used with real markers naturally.

Virtual markers will connect real world and virtual world in our system. Virtual markers

are some virtual objects, but they can work with real markers, which means they can

interact with real world. They can also interact with virtual world, for example, finger ray

from virtual hand. Therefore, in our system, virtual markers are key points to connect real

world and virtual world.

We can combine multiple virtual markers and real markers for visual programming or

some other interactions.

5.6.1 Generating Virtual Marker

We can generate virtual markers in the scenery by touching its corresponding real markers

through AR camera [Figure 27].

Figure 27 Touching real marker to generate its virtual marker

If a real marker is touched, the system will log the information of real marker, and

generate a virtual marker which have a same appearance on the position that the real

marker is put in the scenery. After that, we can remove the real marker from the scenery,

and the corresponding virtual marker will still exist in the scenery. And we can use the

generated virtual marker for some interactions.

5.6.2 Manipulating Virtual Marker

Virtual markers are some virtual objects. Therefore, they can be manipulated with virtual

hand and hand gesture [Figure 28].

27

Figure 28 Hand gesture to control virtual markers

There are some descriptions of these hand gesture:

(1) Selecting Gesture: To make this gesture, the user needs to open his thumb finger and

index finger. There will be a finger ray from the index finger for selecting use in the

AR scenery. The user can use the finger ray to select virtual markers for manipulation.

To express the selected state of virtual markers, we will cover the selected virtual

markers with red highlight [Figure 29].

Figure 29 Using finger ray to select virtual makers in AR scenery

28

(2) Deselecting Gesture: To make this gesture, the user needs to open all his fingers

except the thumb finger. Using this gesture, the user can cancel the selected state of

virtual markers.

(3) Dragging Gesture: This gesture is same to dragging gesture in application 5.4.4. Using

this gesture, we can drag and move the locations of virtual markers in selected state.

We can use this gesture to arrange virtual markers.

(4) Deleting Gesture: To make this gesture, the user needs to open all his fingers and hand

palm and move his hand left and right with some speed. With this gesture, we can

delete the selected virtual markers in the scenery.

(5) All-Clear Gesture: To make this gesture, the user needs to open all his fingers and

hand palm for both hands and move his both hands left and right with some speed

simultaneously. With this gesture, the user can delete all virtual markers in the scenery.

With these hand gesture, we can manipulate virtual markers in the scenery.

5.6.3 Combining Virtual Markers and Real Markers

We can put some virtual markers with some real markers together for visual programming.

In the scenery, we will see some virtual markers and real markers existing together. These

markers will locate in same position coordinate system in the scenery. Therefore, we can

get markers sequence composed of multiple virtual markers and real markers. And as a

next step, we can get the combined information from markers sequence. With the

combined information, we can make our visualization program for some interactions.

5.7 Example of Applications

5.7.1 Virtual Timer

An example of our system is the virtual timer based on multiple markers and hand gesture.

We will show AR time numbers on multiple ARToolkit markers. And we will use hand

gesture to control the running of the virtual timer.

In this application, we only consider the minutes and seconds of the timer, not the hours.

Therefore, we will use up to 4 number markers to show numbers of the timer [Figure 30].

29

And we also use a semicolon marker to show the AR semicolon to separate minutes

number and seconds number [Figure 31].

Figure 30 Four number markers to show AR numbers of the time

Figure 31 Semicolon markers to show AR semicolon

If we just put one number marker in the scenery, the number marker will display an AR

number on it, and the number will increase 1 per second.

If there are four number markers, they will work as a timer [Figure 32]. The system will

recognize number markers from left to right. The 2 rightmost markers will serve for

seconds, and the 2 leftmost markers will serve for minutes. The time of the virtual timer

will increase like real timer, and each number marker will display only one digit of the

time one it. And we can put the semicolon marker between minutes markers and seconds

markers to show an AR semicolon to separate them.

30

Figure 32 Virtual timer using multiple markers

We can set the start time of the timer. The default start time will be 00:00.

We can control the time of timer with hand gesture. In this application, we define 3 hand

gesture to control the time [Figure 33].

Figure 33 Hand gesture to control the timer

There are some descriptions of these hand gesture:

(1) Pause gesture: To make this gesture, the user needs to clench his fist. This gesture will

make the timer pause.

31

(2) Continue gesture: To make this gesture, the user needs to open his palm and straighten

his fingers. This gesture will make the timer continue working from pause state.

(3) Restart gesture: To make this gesture, the user needs to use his two hands to clap. This

gesture will make the timer reset as 00:00.

With these hand gesture, we can control the time on markers.

Combining these markers and hand gesture, we can make a virtual timer and make some

interactions with it.

5.7.2 Hide Marker Controller

Hide marker can be used as the input in our system. We can use hide marker as the

controller to input some information to control the action of AR content.

In this application, we will use AR marker to generate virtual cars as the controlled AR

content, and we will use hide marker to control its movement. Furthermore, we will use

QR code to change the material of the controlled virtual car.

We will also use hand gesture for interactions. In this application, output will be actions

of AR content, and input will be information from hide marker and QR code. We will pair

the input marker and output marker with hand gesture for accurate controlling.

AR Marker Design

As a first step, we need to design AR markers which will be used to generate AR content

for interactions. AR marker should have enough nature feature points for tracking and

recognizing. The picture of AR marker needs to intuitively reflect its corresponding AR

content. In this application, we design 2 AR markers [Figure 34] to generate virtual cars

for interactions.

32

Figure 34 AR markers to generate virtual cars

Hide Marker Design

Hide marker will be used to control virtual cars actions. By touching some parts of hide

marker, we can input some control information to the system. In this application, we will

control virtual cars to move forward or rotate with hide marker controller.

We design a hide marker for controlling [Figure 35]. By touching MOVE part, we can

control the virtual car move forward. By touching ROTATE part, we can control the

virtual car rotate. If we touch both MOVE part and ROTATE at same time, the controlled

virtual car will move and rotate simultaneously.

Figure 35 Hide marker controller to control virtual cars

With hide marker controller and some configurations in the system, we can control the

actions of virtual cars in real time by touching the hide marker.

QR Code Design

We will use QR code to contain some information. After QR code recognition, the system

33

will recognize the information from QR code. And based on the information, the system

will give some response on the AR content, which will be the output.

In this application, we will use QR code to change the material of controlled virtual cars.

We design 3 QR code [Figure 36] for interactions with virtual cars. They will make the

virtual car change to yellow color, blue color and transparent material respectively.

Figure 36 QR code to change material of the virtual car

Pairing Input and Output

In this application, there will be multiple input markers and multiple output markers. AR

markers will be output markers. Hide marker and QR codes will be input markers.

Therefore, we need to pair input markers and output marker for an accurate control.

We defined 2 kinds of hand gesture [Figure 37] to pair input marker and output marker.

Figure 37 Hand gesture for pairing input and output

34

We can use selecting gesture to select some markers. The selected input markers and

output marker will be paired, which means only the selected output marker will be

controlled by selected input markers.

We can use deselecting gesture to cancel the selected state of markers.

We will use some visual clues to make the control explicit [Figure 38].

To express the selected state of markers, we will cover each marker some highlight. If the

marker is in selected state, it will be covered with red highlight. And if the marker is not

selected, it will be covered with white highlight.

To express the relationship between input markers and output marker, we will use virtual

line to link each input marker to the output marker. And if there are more than one input

markers, the linked lines will have different colors.

Figure 38 Some visual clues for pairing input and output

With these designed markers hand defined hand gesture, we can make some interactions

with virtual cars in the application, and we can control the virtual car in real time with

some explicit visual clues.

35

5.7.3 Controlling AR Content with Hand Gesture

We can use hand gesture to control the AR content directly. In this application, we will

use AR marker to generate AR content. And we will use hand gesture to control the size

of AR content, move the AR content and rotate the AR content.

AR Content Generation

We will use AR marker to generate AR content for control.

Hand Gesture Definition

In this application, we will use hand gesture to control AR content directly.

We define 3 kinds of hand gesture to control AR content [Figure 39].

Figure 39 Hand gesture to control AR content

There are some descriptions of these hand gesture:

(1) Dragging Gesture: To make this gesture, the user needs to concentrate all his left-hand

fingers on one point and move his hand. The controlled AR content will have a same

movement direction with the user’s hand. And the movement speed of controlled AR

content will be proportional to the movement speed of the palm. With this hand

gesture, the user can drag and move the AR content to anywhere with has hand.

(2) Rotating Gesture: To make this gesture, the user needs to use his left hand make the

36

dragging gesture hand shape and open his right-hand fingers and hand palm. The

controlled AR content will rotate if the right-hand moves left and right. The rotation

speed of the controlled AR content will be proportional to the movement speed of the

right-hand palm. With this hand gesture, the user can rotate the AR content with his

hands.

(3) Scaling Gesture: To make this gesture, the user needs to concentrate his fingers to one

point for his both hands and move his two hands. The controlled AR content will

zoom in and out with the movement of both hands. The AR content will scale

proportionally with the distance between the thumbs of both hands. With this hand

gesture, the user can control the scale of the AR content with his both hands.

With these hand gesture, we can control AR content generating from AR marker in our

system directly.

5.7.4 Visual Programming – Fibonacci Sequence

In this application, we will use visual programming in our system to define Fibonacci

function and execute it.

Fibonacci Function Definition

We will use a series of markers to define if-condition structure of Fibonacci function

[Figure 40]. The defined condition, “if x < 3” will show on if marker through Web Camera.

Figure 40 If marker definition

37

We will use a series of markers to define then statement of Fibonacci function [Figure

41]. The defined then statement, “then 1” will show on then marker through Web Camera.

Figure 41 Then marker definition

We will use a series of markers to define else statement of Fibonacci function [Figure 42].

The defined else statement, “else F(x-1) + F(x-2)” will show on then marker through Web

Camera.

Figure 42 Else marker definition

After definition of these markers, we can combine if marker, then marker and else marker

to define Fibonacci in function marker. The defined function will show on the defined

38

function marker [Figure 43].

Figure 43 Fibonacci Function marker definition

Now we define the Fibonacci function on function marker.

Fibonacci Function Execution

After definition, we have the defined Fibonacci function marker, and we can execute it

for calculation of the Fibonacci sequence.

We can execute the defined function marker with a series of markers [Figure 44]. We

will use a constant marker to assign value for variable X. And value of variable Y will

be defined as Fibonacci(X).

Figure 44 Makers for visual programming with Fibonacci function marker

39

Executing the markers sequence with executing gesture [Figure 45], we can get the

executed outcome. The value of variable X and variable Y will show on their markers

[Figure 46]. We set constant value as 10. Therefore, after execution, the value of

variable X will be 10, and value of variable Y will be Fibonacci (10), which means 55.

Figure 45 Executing gesture for markers sequence

Figure 46 Executed outcome of markers sequence

5.7.5 Visual Programming – Controlling AR Content

We can combine grammar structure and action markers to make the visualization program,

which can be executed to control AR content to do some actions.

Combining Grammar Markers and Action Markers

We can combine grammar markers and action markers as a marker sequence to control

40

AR content. For example, we can combine loop structure and running marker [Figure 47].

Combining them, we can make the controlled AR content do running action for x times

as a loop.

Figure 47 Combining action marker and grammar structure

We can use the loop marker to replace these markers after definition.

We can also combine other grammar structure in our visual programming with action

markers.

Executing Markers to Control AR Content

After combination and definition, we can combine multiple defined grammar markers to

define a function marker. Executing the function marker with AR marker which will

generate an AR content for controlling, we can control AR content do a series of actions

one by one as we defined in the visualization program.

Working State of Execution

We have 2 working modes of execution.

41

When the system works in normal mode, the AR content will do actions as the user defines.

AR content will do each action for one second until he finishes all actions.

When the system works in debug state, the AR content will do actions one by one as

definition. After finishing an action, AR content will stop actions and wait for next step

gesture [Figure 48]. When the system detects that the user makes the next step gesture,

AR content will continue next action in actions flow we have defined.

Figure 48 Next step gesture

42

Chapter6

System Implementation
6.1 System Hardware

6.1.1 Web Camera and Tripod

We used Logicool HD Pro Webcam c920r [Figure 49] as the Web Camera to help detect

and recognize markers in our system. And We used Velbon EX-Mini S [Figure 50] as the

tripod to fix the web camera for a stable camera view.

Figure 49 Logicool HD Pro Webcam c920r

Figure 50 Velbon EX-Mini S

43

6.1.2 PC

We used PC as the development platform. In our system, we used TOSHIBA Dynabook

[Figure 51] as PC.

Figure 51 TOSHIBA PC

6.1.3 Leap Motion

We used Leap Motion [Figure 52] as the depth sensor to detect user’s hands data. Leap

Motion can track user’s hands and fingers position and transfer these data to our system

which will help us to recognize user’s hand gesture.

Figure 52 Leap Motion

44

6.2 Development Environment
The development operation system is Windows 10 Pro.

The software we mainly used is Unity 3D Engine, which will provide a support for AR

development.

We mainly used C# Programming Language as the script language to realize the system.

For markers recognition, we used Vuforia Engine, ARToolkit 5 SDK, ArUco SDK and

ZXing API.

To use Leap Motion in our system, we need Leap Motion Orion 4.0.0 and Leap Motion

Core Asset Package as the software support [22].

For hand gesture recognition, we used SVM for classification. In our system, we used

Accord.NET Framework API [23] to help us recognize user’s hand gesture.

6.3 Multiple Markers Recognition
In our system, we will use multiple kinds and numbers of markers. We need to recognize

them and combine their information together for further interactions.

6.3.1 NFT (Nature Feature Tracking) Marker Recognition

We use Vuforia SDK to help recognize and track NFT markers.

To recognize NFT marker, we firstly need to register markers information in the Vuforia

Target Manager [Figure 53].

Figure 53 Vuforia Target Manager

Vuforia Target Manager will rate for the uploaded marker images. If the image has enough

nature feature points for tracking, the system will give it 4 or 5 stars rating, which means

the marker will be detect and tracked well when the system is running.

After registering marker’s information, we can download the markers information

45

database and import it to Unity 3D Engine [Figure 54].

Figure 54 Importing Vuforia database to Unity

As a next step, we need make some configurations in Unity [Figure 55]. After that, we

can recognize NFT markers and attach some AR content on it [Figure 56].

Figure 55 NFT markers configurations in Unity

Figure 56 AR content on an NFT marker

46

6.3.2 3D Object Marker Recognition

In our system, we also use Vuforia SDK to recognize 3D object marker.

As a first step, we need an android smartphone as the scanner to scan and log the nature

feature points of a 3D object [Figure 57], which we will use as the marker.

Figure 57 3D object scanning information in a smartphone

After scanning the feature points of the object, we need to upload the scanning data to

Vuforia Target Manager. This step is same to NFT markers recognition.

After uploading and processing, we can download the Vuforia database and import it to

Unity 3D Engine, and after some configurations, we can recognize a 3D object marker

and show some AR content around it [Figure 58].

Figure 58 AR content around an 3D object marker

47

6.3.3 ATK (ARToolkit) Marker Recognition

In our system, we use ARToolkit SDK to help recognize and track ATK marker.

As a first step, we need to register an ATK marker in the ATK markers database [Figure

59]. The ATK markers recognition information will be saved as a .txt file.

Figure 59 Register an ATK marker in the database

After some configurations in Unity, we can recognize and track ATK marker. We can just

use ATK marker to save some information, and we can also use it to show some AR

content [Figure 60] for interactions.

Figure 60 AR number on an ATK marker

48

6.3.4 ArUco Marker Recognition

In our system, we use ArUco SDK to help recognize and track it.

After importing ArUco SDK to Unity 3D Engine, we can recognize and track ArUco

markers. We can use ArUco marker to save some information, and we can also show some

AR content on it [Figure 61].

Figure 61 Red AR cube on an ArUco marker

6.3.5 QR Code Marker Recognition

In our system, we can recognize QR code [Figure 62] through Web camera with the help

of ZXing API [Figure 63].

Figure 62 Recognized information from QR code shown on UI

49

Figure 63 ZXing API used in the recognition C# script

6.3.6 Hide Marker Configuration

We will use hide marker for some input in our system. With the help of Vuforia SDK, we

can recognize hide marker and make some interactions.

Firstly, we need to add some virtual button area on the NFT marker [Figure 64] with the

Virtual Button Behavior script [Figure 65].

Figure 64 Virtual Button Area on NFT marker

Figure 65 Virtual Button Behavior script

50

Then, we need to assign trigger event for each virtual button area. For numbers input, we

set the trigger event as inputting number to the system.

After trigger event configuration, we can use hide marker as the input marker in our

system. Through Web camera, we can touch its virtual button area to trig the event for

input in the system.

Hide marker also can be combined with other markers for input and some interactions.

6.3.7 Multiple Markers Combination

Using different kinds of SDK or API, we can recognize multiple kinds of markers

respectively. And as a next step, we can combine multiple kinds and numbers of markers

information together in one scenery for some further use and interactions.

Firstly, we need to import different kinds of SDK in Unity 3D Engine. And after some

configurations [Figure 66], we can combine multiple markers information together. Based

on the combined information, we can make some interactions or some further applications.

Figure 66 C# Script to combine multiple markers information together

6.4 Hand Gesture Recognition
In our system, we use Leap Motion as the depth sensor to track user’s hand data. Leap

Motion can track fingers, palm and wrist position data of hands in every frame. We can

access these data and use them for hand gesture recognition.

To recognize user’s hand gesture, firstly we need to classify user’s hand shape. And as a

next step, we need to access some hand motion data. Combining hand shape and hand

motion data, we can decide user’s hand gesture.

51

6.4.1 Environment Configurations

To use Leap Motion in Unity 3D Engine, we need some configurations.

As a first step, we need to download and install Leap Motion Orion 4.0.0, which can drive

Leap Motion to work with PC.

And after that, we need to import Leap Motion Core Asset Package to Unity 3D Engine,

which will make it possible to get hand data in real-time from Leap Motion in Unity.

After configurations, we can see our virtual hands in Unity Scenery [Figure 67]. The

virtual hands have same hand shapes and motions to our real hands.

Figure 67 Virtual hands in Unity 3D Scenery

6.4.2 Hand Shape Recognition

In our system, we have static hand gesture and dynamic hand gesture, and we also have

single-hand gesture and double-hand gesture. To recognize different kinds of hand gesture,

as the first step, we need to recognize and classify user’s hand shape, which represents

the static characteristics of user’s hands. In our system, we have mainly 7 kinds of hand

shapes [Figure 68]. They are the basis of hand gestures we will use in our system.

52

Figure 68 Hand shapes in the system

Here are some descriptions of these hand shapes features, which will serve for the hand

shape recognition in the following work.

(1) Closing Hand Shape

In this state, the user's five fingers are tightly closed.

(2) Opening Hand Shape

In this state, the user's five fingers are spread out.

(3) Pointing Hand Shape

In this state, the user's thumb and index finger will stretch out.

(4) Grabbing Hand Shape

In this state, the five fingertips of the user will gather at the same point and make the

shape of grabbing an object.

(5) OK Hand Shape

In this state, the user's thumb and index finger will gather at one point and make an

53

"OK" action.

(6) 4 Extended Fingers Hand Shape

In this state, the user's four fingers except the thumb will stretch out.

(7) Nature Hand Shape

In this state, the user's hand is naturally relaxed. The five fingers are neither fully

extended nor tightly closed.

In our system, we adapt Multi-Class SVM to classify and recognize these different kinds

of hand shapes. In order to get better compatibility with Unity 3D, we apply Accord.NET

Framework to provide some API for SVM learning and using in our system.

There are some steps for multi-class classification:

(1) Data Collection

(2) Data Processing and Normalization

(3) SVM Model Training

(4) Hand Shape Prediction

Data Collection

Leap Motion can provide some position data of user’s hand. In this step, we need to

confirm what kinds of hand data we will need for hand shape recognition and

classification.

After analyzing different kinds of hand shapes that we need to classify, we choose five

fingertips position, hand palm position and wrist position on hand for use [Figure 69]. By

combining these points position information, we can distinguish these different hand

shapes.

We can access these positions information directly from Leap Motion API.

54

Figure 69 Fingertips, palm and wrist position on hand

Data Processing and Normalization

In this step, we need to process and normalize hand information data we have got.

Firstly, we need to process position information of fingertips, palm and wrist. To describe

features from these data, we will calculate the distance between the five fingertips to the

palm of the hand, the distance between the five fingertips to the wrist, and the distance

between the other four fingertips to the thumb. These distance data will be used for SVM

Modeling and Predicting.

After processing, we need to scale all distance data to [0, 1] for normalization.

SVM Model Training

In this step, we need to train a Multi-Class SVM model using the processed and

normalized data. The trained model can be used to predict which hand shape the newly

entered hand data belongs to.

The system will read the hand shape data for training and perform SVM learning. After

training, we can get a trained model that can be used for hand shape classification.

55

In our system, we prepare 100 groups hand data information for each hand shape. These

data will be used for SVM model training.

Hand Shape Prediction

After getting the trained SVM model, we can use it for hand shape recognition and

classification.

We can access hand data in real time from leap motion, and then the system will process

and normalize these hand data. The processed data will serve as the input for hand shape

classification. And the system will classify which hand shape the input hand data belongs

to based on the trained model.

Now, we can recognize and classify the user’s hand shape [Figure 70].

For each hand shape, we tested 100 times based on the trained model. And the recognition

accuracy rate is higher than 93%, which shows that our hand shape recognition method

is effective.

Figure 70 Hand shape prediction outcome shown on Console window

6.4.3 Hand Motion Detection

With SVM, we can classify and recognize user’s static hand shape. As a next step for

hand gesture recognition, we need some motion data of user’s hand to analyze the

dynamic features.

Leap Motion SDK can provide some interfaces for us to access user’s hand motion data

every frame when Leap Motion Controller is connected to the PC and works normally

[Figure 71].

56

Figure 71 Current palm velocity data shown on Console window

From Leap Motion, we can access hand’s palm velocity, palm direction, finger velocity

and finger direction, which will help us define and classify different kinds of hand

gestures. These motion data will also support some interactions between AR content and

hand gesture.

The hand motion data provided by Leap Motion is based on real hand motion. If we want

to use these data for interactions with AR content in Unity scenery, we need to process

and adjust these data for different interactions.

After accessing and processing hand motion data, we can combine them with hand shape

classification for hand gesture recognition.

6.4.4 Hand Gesture Recognition

We define a hand gesture with a hand shape and some hand motion data. Therefore, we

can combine recognized hand shape and real-time hand motion data, we can recognize

user’s hand gesture in real time.

57

For different kinds of hand gesture, there will be different decision condition. If the

current recognized hand shape and hand motion data satisfy its decision condition, it will

be recognized as the corresponding hand gesture.

For example, we will define swiping left hand gesture with open hand shape and the palm

velocity larger than 0.7m/s from right to left. If user’s hand satisfies this condition, the

system will recognize user’s hand as swiping left hand gesture.

A special hand gesture is selecting hand gesture.

When user make the selecting gesture, the finger ray will generate from user’s index

fingertip of virtual hand [Figure 72]. Use can use finger ray to make some interactions

with AR content. And in our system, it is mainly used to select some AR content for

further interactions.

Figure 72 Finger ray from virtual hand

To realize this hand gesture, we need to recognize it at first.

If the system recognizes that user makes the pointing hand shape, user’s hand gesture will

be recognized as selecting hand gesture.

As a next step, we will access user’s index fingertip direction from Leap Motion.

After that, we will use user’s index fingertip position as the start point of finger ray and

use user’s index fingertip direction as the direction of finger ray. With these hand data,

we can draw the finger ray.

If the finger ray collides with some AR content in the scenery, the system will give some

response. With the response, we can decide which AR content is selected by user.

58

With hand shape recognition and hand motion detection, we can realize hand gesture

recognition. With hand gesture recognition, we can make some interactions with AR

content or the system.

6.5 Visual Programming with Multiple Markers and Hand

Gesture

6.5.1 Markers Sequence Recognition

In our system, we will use a series of markers for visual programming. And markers

sequence represents logics of visualization program. Therefore, we need to recognize

markers with defined sequence.

In our system, we define the markers sequence from left to right, and then, line by line

from up to down.

As the first step, we need to recognize all markers in the scenery and access their

coordinate positions in 2-dimension from Unity Scene [Figure 73].

Figure 73 ATK markers position in Unity scene view

Next, we will use their 2-dimension coordinates to get their sequence as we define.

In this step, because we can't accurately place the two markers on the same x coordinate

or y coordinate, we need to set some threshold for coordinate position to decide whether

59

2 markers are in same line or same list.

After that, we will get the 2-dimension markers sequence for processing.

6.5.2 Execution of Visualization Function

With markers sequence, we can define the visualization function program. As the next

step, we need to execute the defined function.

We use the execution of Fibonacci function as the example.

Firstly, we need to transform markers sequence to meaningful and executable code. We

will save the code in a local .txt file [Figure 74].

Figure 74 Executed code saved in .txt file

When we want to use the saved codes, we can read the defined function codes in .txt file.

And using C# reflection, we can create the dynamic class with the defined function and

use it when the project scenery is running. With this, we can use the defined visualization

functions when executing it.

6.6 Virtual Marker
We will use some virtual markers working with real markers for visual programming.

Virtual markers will have same outlook with real markers, and they will form markers

sequence together.

6.6.1 Virtual Marker Modeling

We need to model virtual marker and use them in our system.

60

To make virtual marker in our system, we need to attach real markers picture on virtual

card [Figure 75].

Figure 75 Real Marker and its corresponding virtual marker

After that, we need to save prepared virtual markers models in the prefab file in the project

document for use.

6.6.2 Generating Virtual Marker in Scenery

We want to use virtual markers together with real markers. Therefore, we need to generate

virtual markers in AR scenery.

After virtual markers modeling, we have virtual markers models in the prefab file. We

will check the state of existing real markers in the scenery. If the system detects that a real

marker is touched, it will log the position of the touched marker and generate the

corresponding virtual marker on the same position.

6.6.3 Manipulations of Virtual Marker

We can manipulate virtual markers in our system.

With hand gesture recognition, we can realize hand gesture we have defined about virtual

markers.

Combining the selected virtual marker with the user's real-time gesture information, we

can realize the manipulation of virtual markers.

61

6.6.4 Visual Programming with Virtual Markers and Real Markers

We can get markers sequence from multiple virtual markers and real markers based on

the position information of these markers in the AR scenery. We can get the information

from Unity Engine.

After that, markers sequence information will be used for visual programming.

62

Chapter7

Preliminary Evaluation
We invited 10 people to experience our system and applications. After that, we asked

every participant to finish a questionnaire for evaluation.

7.1 Questionnaire
We designed a questionnaire for participants [Figure 76].

Figure 76 Questionnaire for participants

63

In this questionnaire, we use 5-points scale as the scoring standard for evaluation. Q1 and

Q2 are used to measure whether users can easily get started with our system. Q3 is used

to measure whether our visual programming is explicit and easy to understand. Q4 is used

to evaluate hand gesture interactions in our system. Q5 is used to evaluate hide marker

controller. Q6 is used for evaluation of interactions with virtual objects. Q7 is used to

evaluate whether introducing virtual markers to our system will improve the visual

programming part. Q8 is for applications. Q9 is for some comments from participants.

We asked every participant to finish the questionnaire after they experience our system

and applications.

7.2 Result and Analysis
We invited 10 people to experience our system and applications. After that, we asked

every participant to finish a questionnaire for evaluation.

We calculated the average of the scores for every question from the participants [Figure

77].

Figure 77 Results from participants

From the results, Participants gave a relatively good evaluation of our system.

From results of Q1 and Q2, we can see that participants think our system is easy to

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

64

understand and use. From results of Q3, we can see that participants think visual

programming of our system is explicit and easy to understand. From results of Q4, we

can see that participants think hand gesture interactions in our system is intuitive and

nature. From results of Q5, we can see that participants think hide marker controller is a

good way of interaction. From results of Q6, we can see that interactions with virtual

object is easy to use for participants. From results of Q7, we can see that virtual markers

can improve visual programming part of our system. And from results of Q8, we can see

that participants think applications of our system is interesting and appealing.

Participants also give some comments to our system.

In their comments, they think our system is interesting and useful. However, there are

some points still need to be improved.

1. Some participants think that hand gesture set can be enriched for more interactions.

2. Some participants think that visual programing part can be simplified to make the

visualization program clear.

3. Some participants think that grammar structure of visual programming part can be

enriched for more functions.

Nearly every participant gave good evaluation for interactions with virtual object in our

system in their comments.

7.3 Summary
Generally, participants think our system is interesting and useful. And they give a good

evaluation for interactions in our system, especially for hand gesture.

Our system can be improved in some ways. Hand gesture set can be improved for more

interactions. Visual programming part can be improved for more functions. And more

interesting applications can be made based on our system.

65

Chapter8

Conclusion and Future Work
8.1 Conclusion
In this research, we combine multiple kinds and numbers of markers and hand gesture

together for some interactions and visual programming in marker-based AR system. And

based on the framework, we make some applications.

For markers, we combine multiple kinds and numbers of markers information together in

the system and use the combined information for some interactions and visual

programming. Different kinds of markers have different attributions. Combining multiple

kinds of markers, we can make relatively complex functions than just using one kind of

marker.

For hand gesture, we use Leap Motion as the sensor to get user’s hand information in real

time. After some processing and analysis, we can decide user’s hand gesture. With hand

gesture recognition, we can detect user’s hand gesture in real time. And based on different

kinds of hand gesture, we can design different kinds of interactions. Finally, user can

make some interactions with AR content or the system using his hands. By introducing

hand gesture in marker-based AR system, interactions between user and system will be

natural and intuitive.

Combining multiple markers and hand gesture, we can design some interactions with

virtual content and the system.

For visual programming, we use multiple markers with some sequence to represent some

visualization program logics and use hand gesture to trigger some operations such as

executing the program or save the function. After multiple markers recognition and

information processing, we can execute the visualization program and get outcome.

We make some applications with the framework. We build a virtual timer with multiple

markers and use hand gesture to control the timer. We use hide marker to control some

66

AR content and use hand gesture to pair input and output markers. We can also use hand

gesture to control AR content directly. With visual programming, we can calculate

Fibonacci sequence and controlling AR content with a series of markers.

With our framework, there will be more intuitive and natural interactions in marker-based

AR system. More functions and applications will also be possible.

8.2 Future Work

More Kinds of Markers

Different kinds of markers have their own attributions. If we can combine more markers

in the system, it is possible to make more interactions and functions.

Improving Hand Gesture

Hand gesture design should be natural and intuitive for users. We still need some

evaluations and feedback to improve current hand gesture set.

More Grammar Structures for Visual Programming

Currently we have loop structure, if-then-else branch structure and function structure in

visual programming part. However, as a kind of programming language, there can be

more grammar structures for more functions and high-level visualization program. With

more grammar structures, the visual programming capability of our system will be

extended.

More Possible Applications

Based on our framework, we can make more interesting applications.

Current applications also have some possibilities to modify for a better user experience.

67

Reference

[1] P. Milgram and F. Kishino. A Taxonomy of Mixed Reality Visual Displays. IEICE
Transactions on Information and Systems, vol. E77- D, no. 12, 1994, pp. 1321-
1329.

[2] Anuroop Katiyar, Karan Kalra and Chetan Garg. Marker Based Augmented
Reality. Proceedings of Computer Science and Information Technology (ACSIT),
pp. 441-445, 2015.

[3] Ivo Aluízio Stinghen Filho, Estevam Nicolas Chen, Jucimar Maia da Silva Junior
and Ricardo da Silva Barboza. Gesture Recognition Using Leap Motion: A
Comparison Between Machine Learning Algorithms. SIGGRAPH '18: ACM
SIGGRAPH 2018 Posters, August 2018, Article No.: 65, Pages 1–2.

[4] Madhavi Gangurde. Augmented Reality. ICWET '11: Proceedings of the
International Conference & Workshop on Emerging Trends in Technology,
February 2011, Pages 1363.

[5] David Chen, William Garrett, Mark Livingston, Andrei State, Gentaro Hirota.
Superior augmented reality registration by integrating landmark tracking and
magnetic tracking. Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pp. 429–438, 1996.

[6] Chor-Kheng Lim, Ming-Chih Huang and Fang-Yu Chen. Application AR in field
experience education: development of teaching aids in Chinese literature and
taoyuan local culture. ICETC '18: Proceedings of the 10th International
Conference on Education Technology and Computers, October 2018, Pages 3–6.

[7] Scott G. Dacko. Enabling smart retail settings via mobile augmented reality
shopping apps. Technological Forecasting and Social Change, Volume 124,
November 2017, Pages 243-256.

[8] Gérald Moulis, Alexandre Bouchet. A collaborative approach of augmented
reality for maritime domain. VRIC '12: Proceedings of the 2012 Virtual Reality
International Conference, March 2012, Article No.: 6, Pages 1–2.

[9] Jana Pejoska. Social augmented reality app. AcademicMindTrek '15: Proceedings
of the 19th International Academic Mindtrek Conference, September 2015, Pages
215–216.

[10] Amir H. Behzadan and Vineet R. Kamat. Visualization of construction graphics
in outdoor augmented reality. WSC '05: Proceedings of the 37th conference on
Winter simulation, December 2005, Pages 1914–1920.

68

[11] Juri Platonov, Hauke Heibel, Peter Meier and Bert Grollmann. A mobile
markerless AR system for maintenance and repair. ISMAR '06: Proceedings of the
5th IEEE and ACM International Symposium on Mixed and Augmented Reality,
October 2006, Pages 105–108.

[12] Yuna Kang and Soonhung Han. Improvement of smartphone interface using an
AR marker. VRCAI '12: Proceedings of the 11th ACM SIGGRAPH International
Conference on Virtual-Reality Continuum and its Applications in Industry,
December 2012, Pages 13–16.

[13] Yang Li, Jin Huang, Feng Tian, Hong-An Wang and Guo-Zhong Dai. Gesture
interaction in virtual reality. Virtual Reality & Intelligent Hardware, Volume 1,
Issue 1, February 2019, Pages 84-112.

[14] Ram Pratap Sharma, Gyanendra K. Verma. Human Computer Interaction using
Hand Gesture. Procedia Computer Science, Volume 54, 2015, Pages 721-727.

[15] Shengyu Fang. “Enhancing User Interactions by Combining AR Markers with
Various Kinds of Markers”, Master thesis, Graduate School of Information,
Production and Systems, WASEDA University, 2020-02.

[16] Kazuki Tada and Jiro Tanaka. Tangible programming environment using paper
cards as command objects. 6th International Conference on Applied Human
Factors and Ergonomics (AHFE 2015), July 2015, Pages 4365-4372．

[17] Chunmeng Lu. “A virtual shopping system based on room-scale Virtual Reality”,
Master thesis, Graduate School of Information, Production and Systems,
WASEDA University, 2018-07.

[18] Wei Zeng., Cong Wang and Qinhui Wang. Hand gesture recognition using Leap
Motion via deterministic learning. Multimedia Tools and Applications 77, 28185–
28206 (2018).

[19] Stafford Michahial. Hand gesture recognition using support vector machine. The
International Journal Of Engineering And Science (IJES), June 2015, Volume 4,
Issue 6, Pages 42-46.

[20] Ivo Aluízio Stinghen Filho, Estevam Nicolas Chen, Jucimar Maia da Silva Junior
and Ricardo da Silva Barboza. Gesture recognition using leap motion: a
comparison between machine learning algorithms. SIGGRAPH '18: ACM
SIGGRAPH 2018 Posters, August 2018, Article No.: 65, Pages 1–2.

[21] Rose S P., Habgood J M. P. and Jay T. An Exploration of the Role of Visual
Programming Tools in the Development of Young Children’s Computational
Thinking. The Electronic Journal of e-Learning, Volume 15, Issue 4, 2017, Pages
297-309.

69

[22] Leap Motion Developer. https://developer.leapmotion.com/setup/desktop
[23] Accord.NET Framework. http://accord-framework.net/

