
Original Paper
Vol.19 No.3, 2017

An Algorithm to Detect Midair Multi-Clicks Gestures

Hani Karam∗1, Jiro Tanaka∗2

Abstract – Selection mechanism gestures are used in Natural User Interfaces (NUI) to
designate elements in a User Interface. They usually involve simple gestures with limited
interactions. Being able to use more than one gesture simultaneously increases the vo-
cabulary of the interactions. In this paper, we present MultiX Click, a new algorithm to
detect midair multi-click gestures. Our approach allows the detection of multiple midair
finger clicks using a depth sensor. To show the potential of our algorithm, we implemented
a midair multi-click keyboard and a midair piano that use simultaneous multi-clicks. In
the midair multi-click keyboard, we mixed single and multiple clicks with the ability to
retrieve the location of a click, and as a result we were able to increase the gesture vo-
cabulary. This paper explains in detail the algorithm we used to detect multi-clicks. We
also explain about some preliminary experiments for evaluating it.

Keywords : Midair click detection, Multi-click Detection, Natural User Interface, Leap
Motion, Midair keyboard

1. Introduction

Natural User Interfaces (NUI) involve using the

body as a means for inputting command to a com-

puter system. They usually consist of some kind

of sensors that are used to detect specific gestures

which would be translated into commands. In tradi-

tional Graphical User Interfaces (GUIs), users point

to items (buttons, icons, etc.) by using an input

device, usually a mouse, and select a given item by

performing a click operation. However, in NUI, hand

gestures are mainly used as a way to interact with

a system. It has been suggested that gestures make

an intuitive and natural way to communicate with

a computer [1 ]. A User Interface (UI) usually con-

tains multiple elements, and a selection mechanism,

just like a GUI’s mouse click, is needed to desig-

nate a given item from a UI; this applies to NUI as

well. Many gesture-based selection mechanisms have

been proposed [2]～[5 ]. Most of the existing selection

gestures are unintuitive or limited to one selection

command, and cannot be used to make a more inter-

active UI. Moreover, existing selection mechanisms

miss the ability of performing multiple simultaneous

selections. Adding this capability can increase the

selection gestures vocabulary by allowing combina-

tions of simultaneous gestures to define new inter-

*1：Department of Computer Science, Graduate School
of Systems and Information Engineering, University of
Tsukuba [hani@iplab.cs.tsukuba.ac.jp]
*2：Graduate School of Information, Production and Sys-
tems, Waseda University [jiro@computer.org]

actions. In this paper, we present MultiX Click , a

new approach to detect simultaneous explicit finger

clicks using a depth sensor. We also implemented a

midair multi-click keyboard and a midair piano as

applications to our algorithm.

2. Related Work in Selection Mechanisms

It has been suggested that gestures can be a good

candidate for controlling a computer [6], [7 ]. Wachs et

al. [1 ] point out that gestures should be designed to

be intuitive for users; that is, they should be designed

to resemble the action they are linked to. Kato et

al. [2 ] used a pinching gestures as a selection tech-

nique. While efficient, it is limited in terms of us-

ability, as it can only be used for simple selections.

A similar pinching technique was used in [8 ] to se-

lect and drag windows in a user interface, and suf-

fers from the same limitations. Lee et al. [9 ] defined

a click by identifying the index finger, then deter-

mining whether it got closer to the camera and back.

This makes it limited to the index finger, and cannot

be used for precise interactions. [3 ] detected thumb

and index clicks which were used for basic selection

only. In their research [4 ] Harrison et al. detected

clicking gestures with depth cameras by using flood-

ing techniques; that is, a click is only detected if the

finger executing the gesture touches a solid object.

This forces the users to touch an object and the in-

teraction cannot be performed in midair. A midair

finger click interface was developed for Augmented

Reality systems [10 ]. The only usable finger was the



The Transactions of Human Interface Society Vol.19, No.3, 2017

index, and the interaction was limited to just a se-

lection mechanism. [5 ] uses double crossing, an im-

provement over regular crossing, where a target must

be crossed twice to be selected. This reduced false

detections, but is constrained to a basic selection.

Kulshreshth et al. [11 ] count fingers to select an item

that was previously assigned a specific number as its

ID: when the number of extended fingers matches

the ID, the item is selected. This forces the items

to be numbered, and is only limited to ten elements.

Moreover, the fingers cannot be used for any other

gestures as they are dedicated for counting. Addi-

tionally, in all the above mentioned works, the se-

lection interactions are sequential: users cannot per-

form simultaneous multiple selections, and thus the

interaction is limited to selections that are executed

one after the other.

3. Our Previous work

In this section, we introduce our previous work

that is related to our current research. In [12 ], we had

introduced the “Three Fingers Clicking Gesture” to

detect a click through a depth camera. To detect

an index-click, we first measured the angle between

that finger and the hand’s palm. Whenever the an-

gle crossed a defined threshold, a click was generated.

The Three Fingers Clicking gesture was ergonomi-

cally poor. It also suffered from some limitations

such as users could only use the index finger for click-

ing. To overcome these limitations, we introduced

“Depth Click” [13 ].

In Depth Click, we first detect the 3D coordinates

of the Thumb (T), Index (I), Middle Finger (M),

Ring Finger (R), Small Finger (S), as well as the

palm center (P). Then we create the vectors
−→
PT ,

−→
PI,

−−→
PM ,

−→
PR and

−→
PS. We also retrieve the normal vec-

tor
−→
N perpendicular to the palm. To detect a click

we first compute the angle α between
−→
N and any

of the previously mentioned vectors, we then com-

pute the complement of this angle θ = 90 - α. θ

is the angle by which the finger is bent, relatively

to the palm. It serves as a value that is used for a

click detection by comparing it to a threshold ; a click

is detected whenever a finger crosses this threshold.

This made it possible to detect clicks using any fin-

ger. Furthermore, a click was now separated into

“Click Down” and “Click Up”. A click was hereby

defined as a Click Down followed by a Click Up; this

gave it more flexibility.

4. MultiX Click

Even though we were able to detect the click of any

of the fingers in Depth Click, the clicking mechanism

was limited to an individual generic click detection,

without being able to take advantage of the fact that

clicking of multiple fingers can be realized. With the

ability to perform simultaneous multi-click gestures,

the vocabulary of the interaction can be greatly en-

riched, not just by clicking with multiple fingers, but

also by how the fingers are being clicked. Since our

system can detect the clicking action of multiple fin-

gers simultaneously (Fig. 1), we would like to tap

into this potential and use it to augment the ges-

tures vocabulary. That was one condition for being

able to detect and use multi-clicks. The other condi-

tion is the ability of the system to detect “continuous

clicks”, that is, detecting a click as long as the fin-

gers are held down. Since our system already splits

a click action into “click down” and “click up”, we

used this advantage to detect multi-clicks whenever

a finger is in “click down” mode. This was used in

the Midair multi-click keyboard (6.) and the Midair

Piano (7.), both of which are applications to our al-

gorithm. The midair multi-click keyboard uses “click

down” to detect multi-clicks (just like the midair pi-

ano); however, it also uses an extra approach which

is using a click down in one hand while using its

position to trigger the right modifier key. This is

explained in details in 6. 1.

Fig. 1 a shows a hand in a relaxed position
(no clicking). b shows a multi-click
performed by the middle, ring and
small fingers.



An Algorithm to Detect Midair Multi-Clicks Gestures

5. System overview

5. 1 Hardware

To implement our prototype, we used a Leap Mo-

tion sensor, which runs at approximately 100 fps

(the frame rate varies depending on the available re-

sources). A 23-inch monitor with Full HD resolution

was used as the output device. The prototype has

been implemented on a computer equipped with an

Intel Core i5 3.2 GHz CPU and 4GB of RAM.

5. 2 Software

To test our algorithm, we have implemented a

midair multi-click keyboard and a midair piano. We

explain about them in details in 6. and 7. respec-

tively. We used the Leap Motion SDK to detect the

hands, as well as to retrieve the 3D positions of the

fingers, palm center, and the normal vector perpen-

dicular to the palm. We used those points to con-

struct the various vectors, angles, and distances used

throughout our algorithm. Onscreen rendering was

implemented in SFML, and the entire prototype was

written in C++.

6. Midair multi-click keyboard

To test MultiX Click, we have implemented a

“midair multi-click keyboard”, which can be used to

input the alphabet characters, some special keys, as

well as the “Shift”, “Control” and “Alt” modifier

keys.

6. 1 Triggering the modifier keys

A problem arises when we are mixing both multi-

clicks interactions with single-finger clicks interac-

tions; in some situations, multiple functionalities

might overlap if the same finger is used to detect

a click-down, and later is detected as a regular click

once it goes back behind its threshold. While our sys-

tem supports this kind of gestures, we have designed

the single-finger clicks and multi-clicks to be mutu-

ally exclusive, and only one of them can be used at

a given time. To accomplish this, we have defined a

circle-shaped threshold with the sensor as its center,

and the multi-clicks detection will only be activated

if the users’ hands are outside the circle (that is, if

the distance from the palm center to the sensor is

greater than the circle’s radius). In our system, we

used a radius of 80 mm; using a bigger value will

increase the chance of having the hand outside the

detection range of the sensor, and will hence decrease

its accuracy. To further increase the vocabulary of

the interactions, we used the location of the hand’s

palm center to determine its relative position to the

sensor, in the horizontal plane. To accomplish this,

we measure the angle ̸ XOP between vector OP

(where O is the sensor’s center, and P is the palm

center) and the X axis. We have defined eight angle

values to determine the position of the hand. Each

angle forms an arc of 45 ◦, and thus these eight an-

gles fit inside a circle. If this angle’s value falls within

a given arc, it will then correspond to the position

related to the arc. This angle is measured when a

click is detected outside the circle threshold. Fig. 2

illustrates the arcs and the hand’s position depend-

ing on the arc, and Algorithm 1 explains how the

detection is achieved.

Fig. 2 a shows the distribution of the arcs
around the circle. b shows how to find
the position by measuring the angle ̸

XOP, as long as the hand is outside
the circle. Here, P stands for the palm
center (position of the hand), O stands
for the origin (position of the sensor),
and X corresponds to a point on the X
axis, positioned to the right of O

Algorithm 1 Detection of a multi-click

procedure OnClick

if (OP < radius) then

return

end if

Determine angle ̸ POX // OX is the horizon-

tal X axis

Deduce position from ̸ POX

end procedure

6. 2 Midair multi-click keyboard imple-

mentation

In our research, we suppose that the users will uti-

lize the midair multi-click keyboard in the same way

they do a physical QWERTY keyboard. The keys

are assigned to fingers in the same way too. For ex-

ample, the small finger of the left hand can tap the



The Transactions of Human Interface Society Vol.19, No.3, 2017

“Q, A or Z” keys. The possible keys on our keyboard

are the twenty-six alphabet keys, in addition to the

following four keys: semicolon (;), comma (,), period

(.) and forward slash (/). The space key is also us-

able. To input text using the midair multi-click key-

board, users place their hands about 20cm above the

Leap Motion sensor and then perform midair clicks

as shown in Fig. 3.

Fig. 3 Midair multi-click keyboard prototype

But the main advantage of our keyboard is that it

can detect modifier keys such as “Shift”, “Control”

or “Alt” in a multi-click fashion: users can click and

hold a modifier key with one hand, while inputting

regular keys with the other hand, just as it is done

when typing on a physical keyboard. To input a

“modifier key - regular key” combination, we assume

that the hand inputting the modifier key is outside

the circle defined in 6. 1. In this position, a thumb-

click-down is executed. Upon detection of a click-

down gesture, the position of the hand palm is then

retrieved, and is used to determine the angle ̸ XOP.

This angle is then used to determine the position of

the click-down regarding the predefined locations in

the circle (Fig. 2). The final step would be determin-

ing which hand performed the gestures. If the right

hand executed the click, then the following algorithm

is applied:

• A Shift-click occurs when the thumb is continu-

ously clicking in the right arc (Fig. 2-a)

• A Control-click occurs when the thumb is con-

tinuously clicking in the lower right arc (Fig. 2-

a)

• An Alt-click occurs when the thumb is continu-

ously clicking in the bottom arc (Fig. 2-a)

Conversely, if the left hand performed the gestures,

then the modifier click is detected in the following

way:

• A Shift-click occurs when the thumb is continu-

ously clicking in the left arc (Fig. 2-a)

• A Control-click occurs when the thumb is con-

tinuously clicking in the lower left arc (Fig. 2-a)

• An Alt-click occurs when the thumb is continu-

ously clicking in the bottom arc (Fig. 2-a)

To detect a regular key tap, we first consider that

the hand is inside the circle defined in 6. 1. We then

apply the following steps:

• If a thumb click was detected from either hand,

a space key tap is generated, regardless of the

position of the click.

• If a middle finger, ring finger, or little finger click

was detected, we deduce the row of the tap, then

generate a click of the corresponding key.

• In the case of an index click, we deduce both

the row and the column. We then generate the

appropriate key tap.

To detect the row of a given tap, we determine the

position of the hand relatively to the Leap Motion

sensor, and use it in the following way:

• If the hand is right above the sensor, and inside

a given margin, then we assume that the click

occurred in the middle row of the keyboard.

• If the hand moves away from the user’s body,

and beyond the above mentioned middle row

margin, we determine that the finger tap oc-

curred in the upper row.

• Conversely, if the hand moves closer to the user’s

body, and below the middle row margin, then

we suppose that the finger tap took place in the

lower row.

The index finger can click two columns: a “pri-

mary” one (the column closest to the middle finger)

and a “secondary” one (the column closest to the

thumb). To estimate the column clicked by an in-

dex finger, we suppose the users will move their in-

dex away from the middle finger and closer to the

thumb (for the secondary column) or the other way

around (for the primary one column). By detecting

this variation, we can approximate the intended col-

umn. Knowing the clicking finger, the hand, the row

(and column, in the case of an index finger), it is

easy to determine the key.



An Algorithm to Detect Midair Multi-Clicks Gestures

7. Air Piano Application

Our system can detect different forms of simul-

taneous multiple clicks, such as a click-down in one

hand mixed with a regular click in the other (as used

in the midair multi-click keyboard). Another possi-

bility is detecting all the click-down gestures that are

occurring in one hand. As an application to this sit-

uation, we have created an air piano. An air piano

is an ideal platform to test our multi-click detection

system, especially that when pianists are playing the

piano, they hit multiple keys and generate multiple

notes at the same time. Our system can detect con-

tinuous click-down motions, so we designed the air

piano to keep on playing given notes as long as the

relative fingers are in click-down position; this repli-

cates sustained notes in a regular piano. Once fingers

are not in click-down position (after they perform the

click-up gestures), the respective notes stop playing.

We have extended this to both hands, so users can

play up to ten notes simultaneously.

In our version of the air piano, we have covered

two octaves (14 white keys, 10 black keys); each hand

would operate an octave. The left hand is assigned to

the first octave; to right hand to the second. We first

start by explaining the hand movement assumptions

that we used to simulate playing the piano. We then

explain how each hand operates its assigned octave

separately (Fig. 4).

A piano’s keyboard has two rows: the lower row

which consists of white keys, and the upper row

which consists of black keys. When pianists are play-

ing the piano, we suppose that they move their hands

up (away from their torso) to reach the black keys,

and down (close to their torso to hit the white keys).

To replicate this in our system, we supposed that

the Leap Motion sensor sits in the center of our pi-

ano version (between the two octaves). We used the

same angles model that we have previously utilized

in the detection of the Shift, Control and Alt keys:

whenever a left hand is in the upper left arc of the

circle (Fig. 2 - a), it will be considered that the

users are trying to hit the black keys correspond-

ing to that hand. If the right hand is in the upper

right arc of the circle (Fig. 2 - a), then we consider

that the users want to reach the black keys related

to the right hand. The next step is assigning fingers

to the keys. In the case of black keys, each octave

Fig. 4 Keys detection in Air Piano. The let-
ters S, R, M, I and T correspond re-
spectively to the Small, Ring, Middle,
Index and Thumb fingers. Position 1
shows how the left and right hands are
assigned to the inner white keys. In
Position 2, they are assigned to the
outer white keys. Position 3 illustrates
how the fingers hit the black keys

has five, so the fingers are directly assigned to the

keys in the following manner: in the left hand, the

small, ring, middle, index and thumb fingers are re-

spectively assigned to the first octave’s C#, D#, F#,

G# and A# keys. The right hand’s assignment’s or-

der will be reversed: the second octave’s C#, D#,

F#, G# and A# keys will respectively be assigned

to the thumb, index, middle, ring and small fingers

(Fig. 4 - Position 3).

To hit the white keys, we assume that when the

left and right hands are respectively in the left and

right arcs (Fig. 2 - a), the users want to hit the white

keys. Unlike the black keys, which amount to five in

each octave and can thus be directly assigned to the

five fingers of each hand, there are seven white keys

per octave, and hence a different approach is required

to hit them. Therefore, we used the same approach

that we had previously used in 6. 1 to detect when to

trigger multiple selection. We used a radius (Fig. 2 -



The Transactions of Human Interface Society Vol.19, No.3, 2017

b) of 80 mm as a threshold. If the distance from the

palm center to the Leap Motion sensor is less than

this threshold, then we suppose that the users are

trying to hit the inner notes of an octave; otherwise,

they will be attempting to hit the outer notes. In the

case of the left hand, the small, ring, middle, index

and thumb fingers are respectively assigned to:

• E, F, G, A, B notes of the first octave, in the

case of the inner notes (Fig. 4 - Position 1)

• C, D, E, F, G notes of the first octave, in the

case of the outer notes (Fig. 4 - Position 2)

As for the right hand, the thumb, index, middle, ring

and small fingers are respectively assigned to:

• C, D, E, F, G notes of the second octave, in the

case of the inner notes (Fig. 4 - Position 1)

• E, F, G, A, B notes of the second octave, in the

case of the outer notes (Fig. 4 - Position 2)

Our midair piano supports the simultaneous multi-

click detection of MutiX Click, and thus allows the

users to play multiple notes at the same time. It

also produces an audio output of the corresponding

played note to simulate a real piano operation. Vi-

sual feedback is also given to the users by changing

the color of the key that was hit to green. Both the

audio and visual feedbacks continue to operate as

long as the corresponding key is hit (that is, as long

as the assigned finger is in click-down position).

The participants of the experiment also tried the

air piano, and we have received multiple comments.

Fig. 5 shows the Midair Piano prototype in action.

Fig. 5 Midair Piano prototype. The active
key’s color is changed to green as a vi-
sual feedback to the user

8. Evaluation

To evaluate MultiX Click, we conducted three dif-

ferent experiments.

8. 1 Experiment 1

In the first experiment, we wanted to evaluate the

effect of multi-clicking on the input accuracy. To

evaluate our system, 12 participants (all males) aged

between 20 and 29 (average 23.75, S.D 2.42) were

recruited; 9 amongst them were computer science

/ engineering students. All were right-handed. A

brief introduction was given to the participants on

how to carry out the experiment. They were asked

to practice using the system for about 10 minutes.

To perform the experiment, the participants placed

their elbows on the desk, and their hands about 20

cm above the Leap Motion sensor, as can be seen

in Fig. 3. In one variation of the experiment, the

participants were asked to input all thirty-one keys

while using the three modifier keys Shift, Control,

and Alt. First, they start by using the right hand to

input the modifier keys by using a click down gesture.

While keeping the click-down gesture executed, they

then, with their left hand, input a key. Each “key

- modifier key” combination was entered five times

(Shift + Q, Shift + Q, Shift + Q, Shift + Q, Shift

+ Q, Ctrl + Q, Ctrl + Q, Ctrl + Q, Ctrl + Q, Ctrl

+ Q, Alt + Q, Alt + Q, Alt + Q, Alt + Q, Alt +

Q) They started by inputting the keys correspond-

ing to the upper row of the keyboard (Q, W, E, R,

T), then moved on to the middle row (A, S, D, F,

G). Finally, they continued with the bottom row (Z,

X, C, V, B). Next, they switch hands: the input

modifier keys with their left hand, while at the same

time inputting regular keys with their right hand.

They started with the upper row (Y, U, I, O, P),

middle row (H, J, K, L, ;) and bottom row (N, M,

comma, period, forward slash). Finally, they entered

the space key with their preferred hand, while simul-

taneously entering the modifier keys with the oppo-

site hand. The other variation of the experiment is

similar to the previous one. The only exception is

that participants would not enter any modifier key

here. The participants were allowed to take a break

whenever they felt tired, which was almost once after

each row (six times per experiment). To prevent the

order effect, the order of the experiment variations

was changed for every participant.



An Algorithm to Detect Midair Multi-Clicks Gestures

8. 2 Questionnaire 1

After completing the experiments, the participants

were asked to fill out the following questionnaire, to

which they could respond on a five point Likert scale

(-2 = Strongly negative answer, 2 = Strongly posi-

tive answer):

1. To what extent does multiple selection’s usage

feel natural?

2. To what extent is multiple selection’s usage

easy?

3. To what extent did multiple selection operate as

you thought?

The participants were also offered the opportunity

to enter comments, if any, freely.

8. 3 Results of Experiment 1

Each participant inputted a key 15 times, while

at the same time inputting a modifier key with the

opposite hand. As a result, each key involved 2 sep-

arate inputs, and thus the total inputs per key were

30. This was repeated for all 31 keys of the keyboard,

which sums up to 30 * 31 = 960 in the multi-click

variation. In the other variation, each participants

executed 15 * 31 = 465 inputs, for a total of 1,425

input per participant. All in all, the 12 participants

performed 17,100 inputs. We have analyzed the in-

put accuracy for each experiment variation. Fig. 6

and Fig. 7 show the results per modifier key for the

regular input variation and modifier key variation re-

spectively.

Fig. 6 Success rate (%) by key without using
Multi-click

8. 4 Results of Questionnaire 1

The results of the questionnaire are shown in Table

1

The result of Question 1 shows that the partici-

pants agreed that the usage of multiple selection is

natural, whereas the result of Question 2 indicates

that they marginally agreed that it was easy. Finally

Fig. 7 Success rate (%) by key while using
Multi-click

Table 1 Questionnaire 1 results

Question Mean S.D

Question 1 0.83 0.72

Question 2 0.58 0.79

Question 3 0.50 0.67

result of Question 3 indicates that the participants

marginally agreed that multiple selection operated

as they thought.

8. 5 Experiment 2

In this experiment, we wish to evaluate the effect

of multi-clicking on the input speed in our air key-

board. 12 participants (all males) aged between 20

and 26 (average 23.42, S.D 1.62) were recruited; 5

amongst them were computer science / engineering

students. All were right-handed. A brief introduc-

tion was given to the participants on how to carry out

the experiment. They were asked to practice using

the system for about 10 minutes. The participants

were asked to input the following 5 sentences:

1. “1 Year Has 7 Months With 31 Days”

2. “There are 102248 arachnida species on Earth”

3. “HTML5 is better than HTML4”

4. “Mount Tsukuba Is 877 Meters High”

5. “Star Wars Was Released On May 25th 1977”

The participants had to respect the case of the letters

as they appeared in the sentences. They were asked

to input each sentence in two different ways. In the

first one, they were able to input capital letters by

clicking down on the Shift key with one hand, and

selecting the appropriate key with the other hand.

Since our keyboard does not have keys to input nu-

merical values, we mapped the numbers to a com-

bination of Control button and the keys from the

middle row (a, s, d, f, g, h, j, k, l, semi-colon). Ctrl

+ a would generate the number 1, Ctrl + s would



The Transactions of Human Interface Society Vol.19, No.3, 2017

generate the number 2, and so on. Control + semi-

colon would generate the number 0. In the second

method, we added a “Capital Lock” and a “Num-

ber Lock” buttons on the left and right side of the

keyboard respectively. Those two buttons can then

be activated and deactivated in the same way as the

modifier keys:

• The Capital Lock button is acti-

vated/deactivated when a thumb click occurs in

the left arc (Fig. 2-a)

• The Number Lock button is acti-

vated/deactivated if a thumb click is detected

in the right arc (Fig. 2-a)

Once the Capital Lock key is activated, the inputted

text following that will be in upper case. To return

back to lower case, it has to be deactivated. The

Number Lock key operates in the same way. As with

the previous method, the keys from the middle row

(a, s, d, f, g, h, j, k, l, semi-colon) are mapped to

the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. To prevent

the order effect, the order of the sentences and that

of the input method were chosen randomly for each

participant.

8. 6 Results of Experiment 2

We have measured the average time in seconds to

complete inputting the sentence in both input meth-

ods. Furthermore, we analyzed the collected data

using a paired t-test (α = 0.05). Table 2 shows the

results.

Table 2 Results of Experiment 2. Single-
click refers to the method where the
Capital and Number lock keys were
used. Multi-click refers to the input
method where the Shift and Con-
trol keys were used to input capi-
tal letters and numbers respectively.
Diff shows the difference of speed be-
tween the two methods

Sentence Single-click Multi-click T-test (p) Diff.
1 52.21s (S.D. 14.22) 38.65s (S.D. 15.10) 0.013 26%
2 43.30s (S.D. 12.06) 43.07s (S.D. 14.74) 0.967 1%
3 31.37s (S.D. 8.50) 33.45s (S.D. 10.06) 0.590 6%
4 44.20s (S.D. 12.49) 34.00s (S.D. 9.84) 0.038 23%
5 57.10s (S.D. 15.61) 43.02s (S.D. 11.16) 0.019 25%

8. 7 Experiment 3

In this experiment, we wanted to evaluate the

multi-click detection in Air Piano. For this purpose,

10 participants (all males) aged between 22 and 26

(average 23.5, S.D 1.08) were recruited; 8 amongst

them were computer science students. 9 were right-

handed. A brief introduction was given to the par-

ticipants on how to carry out the experiment. They

were asked to practice using the system for about

5 minutes. In this experiment, the participants were

asked to input 3 different piano chords, 10 times with

each hand. To prevent the learning effect, the hand,

and the chord that was executed by that hand were

selected at random each time. Piano chords involve

hitting multiple notes at the same time. The follow-

ing chords were used:

• C Major, using C, E and G notes

• C sus 2, using C, D and G notes

• C sus 4, using C, F and G notes

As explained in 7., the notes C, D, E, F and G are

respectively mapped to the small, ring, middle, in-

dex and thumb fingers of the left hand, and to the

thumb, index, middle, ring and small fingers of the

right hand. Therefore, the fingers used to perform

the chords are different for each hand. Table 3 and

Table 4 show the fingers used respectively in the left

and right hands to execute the chords.

Table 3 Fingers used in the left hand to exe-
cute the chords. The corresponding
note is shown in parenthesis

Chord Finger 1 Finger 2 Finger 3

C Major Small (C) Middle (E) Thumb (G)

C sus 2 Small (C) Ring (D) Thumb (G)

C sus 4 Small (C) Index (F) Thumb (G)

Table 4 Fingers used in the right hand to ex-
ecute the chords. The corresponding
note is shown in parenthesis

Chord Finger 1 Finger 2 Finger 3

C Major Thumb (C) Middle (E) Small (G)

C sus 2 Thumb (C) Index (D) Small (G)

C sus 4 Thumb (C) Ring (F) Small (G)

8. 8 Results of Experiment 3

We evaluated the chords detection in Air Piano.

Each chord is inputted with specific fingers. For a

positive detection, only the required fingers had to

be detected. Any other condition (less than the re-

quired fingers were detected, more than the required

fingers were detected, no detection at all) was con-

sidered negative and was rejected. We duly note that

all chords executions were detected, and thus the re-

sults reflect whether the right or wrong combination

of fingers was detected. Table 5 shows the results of

the chords detection rate.



An Algorithm to Detect Midair Multi-Clicks Gestures

Table 5 Results of the average chords detec-
tion rate per hand (the standard de-
viation is shown in parenthesis)

Hand C Major C sus 2 C sus 4

Left 44% (3.13) 83% (1.77) 83% (1.70)

Right 34% (4.30) 79% (1.79) 91% (0.88)

8. 9 Questionnaire 2

After completing the experiment, the participants

were asked to fill out the following questionnaire, to

which they could respond on a five point Likert scale

(-2 = Strongly negative answer, 2 = Strongly posi-

tive answer):

1. To what extent is the C Major chord input easy?

2. To what extent is the C sus 2 chord input easy?

3. To what extent is the C sus 4 chord input easy?

The participants were also offered the opportunity

to enter comments, if any, freely.

8. 10 Results of Questionnaire 2

The results of the questionnaire are shown in Table

6

Table 6 Questionnaire 2 results

Question Mean S.D

Question 1 -0.40 1.43

Question 2 1.50 0.53

Question 3 0.80 0.92

8. 11 Air Piano impressions

We have received many comments on the Air Pi-

ano application, mostly positive. One participant

commented that he learned piano for six years and

was very satisfied with the air piano. Another stated

that he was able to play a section of the “Do-Re-Mi

song” after some practice. Other comments included

“the air piano was very natural to use”, “the air pi-

ano was fun”, and “I think people can use the air

piano to practice on the train”. Others commented

that “changing octaves was a bit difficult” and “un-

intentional keys were detected some times”.

‘

9. Discussion

In this section, we discuss the results of the three

experiments and the possibilities of our system. We

start by explaining the target of the midair multi-

click recognition rate. We have defined the following

three levels for the recognition rate:

• Level 0: 90% accuracy.

• Level 1: 99% accuracy.

• Level 2: 99.9% accuracy.

We have also defined the following 3 levels for input

speed:

• Level 0: 8 strokes per minute - we can input in

any way.

• Level 1: 40 strokes per minute - we can input

with some stress.

• Level 2: 200 strokes per minute - we can input

with no stress.

The target recognition rate and the target speed will

depend on applications. For the Midair Keyboard

application, our initial goals were Level 1 for accu-

racy and Level 1 for speed. For the Air Piano appli-

cation, our initial goals were Level 0 for accuracy and

Level 1 for speed. As can be seen from the results

of Experiments 1 and 2, the Midair Keyboard goals

have almost been satisfied.

Experiment 1 shows that we can type letters with

a reasonable recognition rate. If we use multi-

selection, we can also type with a reasonable recog-

nition rate, i.e., multi-click does not lower the recog-

nition rate drastically.

Experiment 2 shows that we can type regular En-

glish sentences with a certain speed. Comparing

single-click and multi-click, multi-click seems to pro-

vide us with shorter input time when the words start

with a capital letter. On the other hand, when con-

secutive numbers are appearing, multi-click does not

shorten the input time.

Experiment 3 shows the detection and recognition

rates of multi-clicks. Previous research [14], [15 ] shows

that human fingers do not move independently, and

that motions were produced in other fingers even if

the subjects were asked to move just one finger. Due

to the constraints of the hand anatomy, some rates

dropped. But we can say that the above accuracy

goal for Air Piano has been satisfied. Moreover, since

we can play the Air Piano in real time, we can say

Level 1 speed has also been realized.

By introducing finger clicking, and using different

fingers, we can input gesture sequences in a smoother

way, which is a great advantage compared to one-

shot finger shape gesture. By explicitly detecting

finger clicks, we were able to have a great control

over the interaction. We were able to precisely define

the beginning and the end of gestures by using clicks.

Our system successfully detects single clicks, “hybrid



The Transactions of Human Interface Society Vol.19, No.3, 2017

multi-clicks” using both hands (two clicks, one com-

ing from each hand, are detected simultaneously) and

“pure multi-clicks” (multiple fingers clicked in one

hand). Moreover, in the latter case, the identity of

the fingers is also detected and not just the number of

multi-clicking fingers (i.e. a multi-click with the in-

dex and thumb is different than a multi-click with the

index and ring fingers, even though in both cases two

fingers are clicked). Identifying the fingers that click

in a single hand expands the vocabulary of the inter-

action in that given hand. Finally, combining single

clicks, hybrid multi-clicks and pure multi-clicks, such

as mixing pure multi-clicks in both hands, gives rise

to multiple possibilities and thus notably increases

the overall vocabulary of midair clicks.

10. Other Possible Applications

A potential application for our system is a midair

guitar player. Since our system can distinguish

multi-clicks this can be used to estimate the chords

that a player is trying to play.

Typically, the ability to use multi-clicking enriches

the gesture interaction vocabulary. This increase of

vocabulary is very flexible too: the combination of

multi-clicks can be used to differentiate gestures. For

example, simultaneous clicking of different fingers (in

the same hand) can generate different gestures, as

has been shown in Experiment 3. This can be mixed

with regular clicks from the other hand. A possi-

ble application to this scenario is a secure input sys-

tem for passwords or PINs. For example, let’s sup-

pose that a user’s PIN is 123. Each of the digits

1, 2 and 3 will be inputted using a regular click in

one hand, while simultaneously performing different

multi-clicks in the other hand. Therefore, the PIN

is not just 123 anymore, but a combination of num-

bers in one hand and multi-clicking with different fin-

gers in the other hand, which makes its input more

secure and decreases the chances of being guessed.

Another possible application to multi-clicking is 3D

multi-touch gestures, the same way multi-touch is

used in smartphones or tablets by using multiple fin-

gers. For example, we can click with the index and

middle fingers simultaneously, then swipe the hand

to trigger a scroll depending on the swipe direction.

Moreover, a 2-finger click can be used to generate a

right-click action, and a pinch with thumb and index

fingers can be used to zoom in or out of a picture.

11. Conclusion and Future Work

In this paper, we described MultiX Click, a new

midair multi-click detection algorithm. Our algo-

rithm allows the detection of simultaneous clicks exe-

cuted using multiple fingers. Moreover, we were able

to combine the detection of multi-clicks with regu-

lar clicks, and thus increasing the gestures interac-

tion vocabulary. As an application to our technique,

we have implemented a midair QWERTY keyboard

with Shift, Control and Alt modifier keys. Users can

utilize these modifier keys by clicking down on them;

they can use a normal click on any other key, as if

using a physical keyboard. We have also successfully

implemented an air piano as an application to simul-

taneous multi-clicks where users can play multiple

notes together by simultaneously performing midair

clicks with multiple fingers. The multi-click usage

was found to be natural. In our future work, we

would like to explore the possibility of using a com-

bination of heuristics and machine learning to further

increase the accuracy of our algorithm.

Reference

[1] Juan Pablo Wachs, Mathias Kölsch, Helman Stern,
and Yael Edan. Vision-based hand-gesture applica-
tions. Communications of the ACM, Vol. 54, No. 2,
pp. 60–71, February 2011.

[2] Haruhisa Kato and Hiromasa Yanagihara. Pac-
man ui: Vision-based finger detection for posi-
tioning and clicking manipulations. In Proceedings
of the 15th International Conference on Human-
computer Interaction with Mobile Devices and Ser-
vices, MobileHCI ’13, pp. 464–467, 2013.

[3] Daniel Vogel and Ravin Balakrishnan. Distant
freehand pointing and clicking on very large, high
resolution displays. In Proceedings of the 18th An-
nual ACM Symposium on User Interface Software
and Technology, UIST ’05, pp. 33–42, 2005.

[4] Chris Harrison, Hrvoje Benko, and Andrew D.
Wilson. Omnitouch: Wearable multitouch interac-
tion everywhere. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and
Technology, UIST ’11, pp. 441–450, 2011.

[5] Takashi Nakamura, Shin Takahashi, and Jiro
Tanaka. Double-crossing: A new interaction tech-
nique for hand gesture interfaces. In Computer-
Human Interaction, pp. 292–300, 2008.

[6] Jakub Segen and Senthil Kumar. Look ma, no
mouse! In Communications of the ACM, pp. 102–
109, 2000.

[7] Christian von Hardenberg and François Bérard.
Bare-hand human-computer interaction. In Pro-
ceedings of the 2001 Workshop on Perceptive User
Interfaces, pp. 1–8, 2001.

[8] Jinha Lee, Alex Olwal, Hiroshi Ishii, and Cati
Boulanger. Spacetop: Integrating 2d and spatial



An Algorithm to Detect Midair Multi-Clicks Gestures

3d interactions in a see-through desktop environ-
ment. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13,
pp. 189–192, 2013.

[9] Unseok Lee and Jiro Tanaka. Finger identification
and hand gesture recognition techniques for natu-
ral user interface. In APCHI ’13 Proceedings of the
11th Asia Pacific Conference on Computer Human
Interaction, pp. 274–279, 2013.

[10] Atsushi Sugiura, Masahiro Toyoura, and Xiaoyang
Mao. A natural click interface for ar systems with
a single camera. In Proceedings of Graphics Inter-
face 2014, pp. 67–75, 2014.

[11] Arun Kulshreshth and Jr. Joseph J. LaViola. Ex-
ploring the usefulness of finger-based 3d gesture
menu selection. In CHI ’14 Proceedings of the
SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 1093–1102, 2014.

[12] Hani Karam and Jiro Tanaka. Two-handed inter-
active menu: An application of asymmetric biman-
ual gestures and depth based selection techniques.
In HCII ’14 Proceedings of the 16th International
Conference, HCI International 2014, pp. 187–198,
2014.

[13] Hani Karam and Jiro Tanaka. Finger click detec-
tion using a depth camera. In AHFE ’15 Proceed-
ings of the 6th International Conference on Applied
Human Factors and Ergonomics and the Affiliated
Conferences, pp. 5381–5388, 2015.

[14] Charlotte Häger-Ross and Marc H. Schieber.
Quantifying the independence of human finger
movements: Comparisons of digits, hands, and
movement frequencies. In The Journal of Neuro-
science, pp. 8542–8550, 2000.

[15] Zong-Ming Li, Shouchen Dun, Daniel A. Harkness,
and Teresa L. Brininger. Motion enslaving among
multiple fingers of the human hand. In Motor Con-
trol, pp. 1–15, 2004.

（received Dec. 2, 2016，revised May 3, 2017）

Biography

Hani Karam

Hani Karam is a PhD candidate in
the Department of Computer Sci-
ence at the University of Tsukuba,
Japan. His research interests in-
clude human-computer interaction
and midair finger tap interfaces. He
received his B.S. in Computer Sci-
ence at the Université Libanaise -
Faculté des Sciences II, Lebanon in
2002.

Jiro Tanaka （Member）

Jiro Tanaka is a Professor of Grad-
uate School of IPS, Waseda Uni-
versity. His research interests in-
clude ubiquitous computing, inter-
active programming, and computer-
human interaction. He received a
BSc a MSc from University of
Tokyo in 1975 and 1977. He received
a PhD in computer science from Uni-
versity of Utah in 1984. He worked
at Department of Computer Science,
University of Tsukuba as an Asso-
ciate Professor and a Professor from
1993 to 2016. He is a member of
ACM, IEEE and IPSJ.

（C）NPO法人ヒューマンインタフェース学会




	pagenum_c65: ( 65 )
	pagenum_s283: 283
	pagenum_c66: ( 66 )
	pagenum_s284: 284
	pagenum_c67: ( 67 )
	pagenum_s285: 285
	pagenum_c68: ( 68 )
	pagenum_s286: 286
	pagenum_c69: ( 69 )
	pagenum_s287: 287
	pagenum_c70: ( 70 )
	pagenum_s288: 288
	pagenum_c71: ( 71 )
	pagenum_s289: 289
	pagenum_c72: ( 72 )
	pagenum_s290: 290
	pagenum_c73: ( 73 )
	pagenum_s291: 291
	pagenum_c74: ( 74 )
	pagenum_s292: 292
	pagenum_c75: ( 75 )
	pagenum_s293: 293
	pagenum_c76: ( 76 )
	pagenum_s294: 294


