
２０１8年度 修士論文

Running Support System in Realistic 3D Map

Using Body Movements

指 導 教 員 田 中 二 郎 教 授

早 稲 田 大 学 大 学 院 情 報 生 産 シ ス テ ム 研 究 科

情 報 生 産 シ ス テ ム 工 学 専 攻

インタラクティブプログラミング 研 究

44161017-1 ADHI YUDANA SVARAJATI

Abstract

We developed a running support system using body movements as input in a realistic

3D Map. In our system, the user uses their body movements to control movements in

the 3D map. We used depth-camera sensor to track the user’s body joints movement

as the user moves. The location changes are tracked real-time and the system

calculates the speed. The speed derived from the system mechanism will later be used

as speed control in our system. This means when the user run in the real life, they will

also feel like running in the system naturally. The user will also feel the realistic

aspect of our system because the speed can keep up with user’s speed in the real life.

Realistic 3D map from Zenrin is used in our system. The map consists of several

detailed featured such as traffic information, train station, and another natural feature

such as weather, lightning, and shadow. Therefore, we hope that by using this virtual

environment in our research, we can help the user to feel more realistic and fun

experiences. Besides, the map also holds various possibilities for rich and interactive

system in the future.

In our system, we use a head-mounted display to assist the user’s experience while

using the system. The user will wear the head-mounted display while running and can

see the realistic 3D map. We aim to provide immersive experience so the user can feel

like going to the real place and keep motivates the user to give better running

performances.

Integrating realistic 3D map as part of the system will enrich human experience, keep

user motivated, and provide natural environment that is similar with the real world.

We hope our system can assist the users as one of possible alternatives running in a

virtual environment.

Keyword: Realistic 3D map, Running Support System, Body Movement

TABLE OF CONTENTS

Table of Contents ... 3

List of Figures ... 5

Chapter 1 Introduction ... 7

1.1 Research Background .. 7

1.2 Motivation ... 8

Chapter 2 Target & Approach ... 9

2.1 Goal Description ... 9

2.2 Target System .. 9

2.3 Approach ... 10

Chapter 3 System Design .. 12

3.1 System Overview .. 12

3.2 Realistic 3D Map ... 13

3.3 Body Movement as Input .. 14

 3.3.1 Moving Forward Mechanism ... 15

 3.3.2 Speed Control ... 16

 3.3.3 Horizontal Rotation .. 18

 3.3.4 Posture Control ... 19

3.4 Collision Control ... 20

3.5 Head Mounted Display Settings .. 22

3.6 Additional Interfaces ... 23

Chapter 4 System Implementation ... 25

4

4.1 Realistic 3D Map ... 25

4.2 System Settings ... 31

4.3 Body Movement as Input .. 35

 4.3.1 Moving Forward Mechanism ... 38

 4.3.2 Speed Control ... 39

 4.3.3 Horizontal Rotation .. 42

 4.3.4 Posture Control ... 43

4.4 Collision Control ... 44

4.5 Additional Interfaces ... 45

Chapter 5 Evaluation and Discussion .. 46

5.1 ISIPS 2017... 46

Chapter 6 Related Works.. 51

6.1 Using Body Movements in VR System .. 51

6.2 Realistic 3D Map in VR System ... 52

Chapter 7 Conclusion .. 53

7.1 Summary ... 53

7.2 Future Works ... 53

Acknowledgement

References

5

LIST OF FIGURES

Figure 1. Target System Illustration .. 10

Figure 2. System Illustration .. 12

Figure 3. Akihabara 3D Map by Zenrin... 13

Figure 4. Akihabara 3D Map by Zenrin... 13

Figure 5. Body Skeletal Data Captured by Kinect ... 14

Figure 6. Body Movement Integration... 15

Figure 7. Running and Walking Posture .. 15

Figure 8. Changing Point of View ... 16

Figure 9. User’s Orientation Toward Depth-Camera .. 18

Figure 10. Good Posture and Bad Posture in Running .. 19

Figure 11. Reminding User to Correct Their posture .. 20

Figure 12. Moving Area in The Room... 20

Figure 13. User Getting Too Near an Object in The Room ... 21

Figure 14. The System reminds the User to Move Backward 21 21

Figure 15 Samsung Gear VR Head Mounted Dsiplay. .. 22

Figure 16. Server Streaming Kinect Data .. 22

Figure 17. Sever-Client Component in Unity .. 22

Figure 18. Running Performance Display ... 23

Figure 19. Zenrin 3D Map Menu ... 25

Figure 20. Different Weather Configuration ... 26

Figure 21. Turning on Shadow Control (a) and Off (b) ... 26

Figure 22. Rain Interface in The City Environment .. 27

Figure 23. Several Point of View Selections ... 27

Figure 24. Fly Through Mode (a) and Driving Mode (b) .. 28

Figure 25. Moving Avatar Code .. 28

Figure 26. Car “NavMesh” Code ... 29

Figure 27. FPS Code .. 29

Figure 28. Post-Edit 3D Map Asset ... 30

Figure 29. Imported Avatar in the 3D Map ... 31

6

Figure 30. System Setup .. 32

Figure 31. Devices Relationship Illustration ... 32

Figure 32. Kinect SDK Browser .. 33

Figure 33. Kinect studio v2.0 ... 34

Figure 34. Kinect v2 Unity Plugin as Unity Package .. 34

Figure 35. Capturing Data Using Kinect in Unity ... 35

Figure 36. Avatar Connected with User’s Body Joints .. 36

Figure 37. Avatar Joints Structure ... 37

Figure 38. Avatar Component.. 37

Figure 39. Attaching Avatar’s Feet with A Game Object ... 38

Figure 40. First Person Controller Code .. 39

Figure 41. Position Tracking Code .. 40

Figure 42. Avatar Joint Position Controller ... 40

Figure 43. Tracked Joint and Speed Calculation ... 41

Figure 44. Unity Object Movement Speed Control Window 41

Figure 45. Quaternion Calculation Code ... 43

Figure 46. Calculating Distance Between User and Object ... 44

Figure 47. “Time” Feature Code .. 45

Figure 48. ISIPS Symposium 2017 .. 46

7

Chapter 1 Introduction

1.1 Research Background

Realistic 3D map and Head Mounted Display developments open new

possibilities for creating interactive and immersive interface that enables user to

explore and enjoy new experiences in the virtual world. On the other hand, depth-

camera is a well-known device that can locate body joints and recognize body

movements based on body joints’ location changes. There are several depth-cameras

in the market, such as Leap Motion which specialized in detecting hands and finger

movements We are interested in full body movements tracking using Kinect depth-

camera in a realistic 3D map environment.

Realistic 3D map recently becoming more popular due to the increasing need of

virtual environment that is similar with the real world. Zenrin, a map company from

Japan, created realistic 3d map of cities in Japan. The Zenrin 3D map includes

detailed information such as traffic and road sign, public spaces, and natural

landscapes [1]. Several cities already developed and many more will come, giving

opportunities for virtual reality (VR) system development.

Virtual reality provides many possibilities for developing interactive and

immersive applications. Although the use of VR holds risk, such as VR sickness [2],

it certainly provides opportunities for new applications and provides a unique

experience to the user.

Exercise is one of the most important aspect of human life. We need to exercise

in daily routine to keep our body healthy and fit. There are many varieties of exercise,

but among them running is popular because people consider it fun and easy to do.

Despite the popularity of running, in this modern time, many people do not exercise

enough for maintaining their health. There are lots of reasons for keeping people from

doing routine exercise, therefore we aim to create a system that people can use for

exercising, especially running, anytime and anywhere they want.

8

In this paper, we propose a support system for running in a realistic 3D map.

The user’s body movements will be used as input by mapping it using Kinect depth

camera [3]. The 3D map used in this system is a replication of the real environment of

a city in Japan. The use of realistic 3D map will keep the user motivated and provide

familiarity with the real environment.

1.2 Motivation

We are aiming to create a running support system in which a user uses his

body movement to control movements on the 3D map. When the user runs in the real

world, the user will also feel like running in the map naturally. Integrating realistic 3D

map will enrich the human experience, keep user motivated, and provide a natural

environment, which is similar to the real world. We will use a realistic 3D Map of a

city in Japan by Zenrin (Map Company) to provide a similar environment with the

real world.

A system using a realistic 3D map as its environment is still limited, due to the

lack of suitable environment. The development of 3D map of cities in Japan by Zenrin

provides and opens new ways for presenting immersive experience.

Body movement is used as input to the system by mapping the user’s body joints into

a character in the system [3]. By using body movement as input, the user will feel

more connected and realistic in the way they move and control the system. The body

joints movement data will be used to calculate velocity and recognize action [4]. The

action recognized will determine the movement in the system.

Exploring a large virtual environment usually required lots of space in the real world.

Consequently, many systems related to virtual environment exploration could only be

realized in small scale or using a controller to move in the virtual world. Using

controller to control movement in the virtual world will provide one solution, but

consequently the system will not provide natural feeling for the user. Another possible

solution is to use walking in place principle to explore a large virtual reality

environment, so we do not need to provide lots of space in the real world [5].

9

Chapter 2 Target & Approach

2.1 Goal Description

The synergy between virtual reality and human motion can be applicable for

improving human health, such as creating running support application. Currently

available sport systems provide various features and experiences to the user and

various devices also available. However, the currently available systems in the market

still holds problems that we need to solve, such as:

1. Lack of interactive ways to explore a virtual world using realistic body

movement

2. Realistic 3D map which is like the real world has not been used for enhancing

human experiences

Solving these problems becomes our research’s goal. We are aiming to solve the

lack of ways for virtual exploration and use the currently available realistic 3D map.

We summarize our goal in the following:

1. Provide ways for interacting and exploring virtual world through creating a

running support system using body movement as input

2. Create the running support system using realistic 3D map by Zenrin so the

user can get rich experiences and feels like going to the real place in the real

world

2.2 Target System

The target system of our research is a running support system that uses body

movement as input while exploring the realistic 3D map in immersive way. We will

use several devices such as Kinect Depth-camera and Samsung Gear VR Head

mounted display in our research. Figure 1 illustrates our target system.

10

Figure 1. Target System Illustration

As illustrated in figure 1, the user’s body movement is tracked by Kinect

depth-camera real-time. The body movement acts as input to the system, so when the

user moves their body according to certain manner, the system will give some

feedbacks. The user body is integrated with the system and they will be able to look

around the system using head-mounted display. In the end, we integrate our system

with a realistic 3D map as virtual world so the user can do exercise while exploring

the environment.

2.3 Approach

1. We use 3D map from Zenrin company as our virtual world environment. The

3D map from Zenrin provides detailed and accurate information so the user

will feel like going to the real place in the real world. The user will also be

easier to remember the location and maintain their running performance. User

will feel like running in real place, therefore the performance is expected to be

similar with the real running.

2. In this system, we use body movement as input. The User’s body movement is

tracked and processed into another output in the system. We use body

movement to provide natural feeling toward the user, so the user will move at

ease and feel like connected into the system through their body. The body

movement is represented by body joint’s movement in real time.

11

3. Among several depth cameras, we choose to use Kinect depth-camera. We

choose Kinect as our tool because of its capability to capture whole body data.

Kinect can capture the user’s body movement through tracking the body

joints. Kinect also provides tracking of more than 36 body joints and another

feature such as gesture. We would like to use the whole-body movement to

produce movement in the system, speed control, posture control, and another

feature that require full body movement

4. User will use head-mounted display to look inside the 3D map. We decided to

use HMD to provide the user with immersive feeling and in more natural way.

The user can run in longer period and get the feeling of the certain area the

user explore in the map

12

Chapter 3 System Design

3.1 System Overview

We developed a running support system in a realistic 3D map using body

movements as input. The user body movement’s such as knee and hip will be tracked

and processed by the system. When the user moves such as running or walking in the

real world, the user can explore the realistic 3D map. Figure 2 illustrates our system.

Figure 2. System Illustration

The user can run, walk, and rotate inside the realistic 3D map. Besides those

features, our system will also have speed control for controlling movement speed in

the 3D map, horizontal rotation for moving the point of view of user horizontally,

posture control for maintaining user’s good posture while running, collision control

for preventing injury, and several additional interfaces.

We are using depth camera, pc, head mounted display in our system. Those

devices are installed, integrated, and programmed for creating our system. In the

following sections, we will explain features included in our system and Chapter 4 will

presents the detailed information about our features such as installation, scripting, and

many more.

13

3.2 Realistic 3D Map

We implemented the system for running support system in a realistic 3D map.

We use a 3D map of city in Japan provided by Zenrin. In our system, we use the

Otaku city 3D map (Akihabara) because of its popularity worldwide. The 3D map

provides a detailed environment and smooth images of the real Akihabara City as

shown in figure 3. We downloaded the 3D map file from Unity Asset Store.

Figure 3. Akihabara 3D Map by Zenrin

Information in the 3D map consists of several detailed infrastructure, public

spaces, and natural landscapes. We can observe traffic and road signs, train station,

and rivers just like in the real world as shown in figure 4. By using this detailed map,

we hope can keep the user’s motivation high and make the user feel like exploring the

location in the real world.

Figure 4. Akihabara 3D Map by Zenrin

14

The raw file downloaded from Unity asset store still contains several features

provided by the company. To develop system of our own, we need to delete the

current features and install our own. Section 4 will present the detailed explanations.

3.3 Body Movement as Input

We are tracking body movements of the user and use it as input to the system.

For realizing the system, we need to track the user’s body joints and observe its

movements. In this case, we use Kinect depth-camera to capture the user’s body joints

as shown in figure 5.

Figure 5. Body Skeletal Data Captured by Kinect

 By using Kinect depth-camera, we can capture the whole-body structure of the

user in the matter of capturing body joints. Kinect Microsoft SDK provides data for

capturing 25 body joints, and by tracking those joints we can use its movements as

input for the system. After tracking certain joints movement, we will implement

several algorithms to calculate their velocity and use it as variable in the movement

mechanism, speed control, etc.

We connect each joint to a character model in the 3D map using unity and

“Kinect v2 Examples with MS-SDK” asset. The user’s movement is integrated with

the character, as shown in figure 6. By integrating the user’s movement to the

character, we want to make the user feel connected and get “feedback” feeling.

15

Figure 6. Body Movement Integration

The body joint movements will be used for creating several features in the

system such as running/walking movements, rotation, running/walking and rotation

speed integration, and posture control. In our system, the movements from several

body joints is observed to make a more realistic running support system.

3.3.1 Moving Forward Mechanism

The first feature of the system is the moving forward. The purpose is how to

make the user runs as if running in the real world by moving their leg, arms, and

create certain posture that are similar. If the user makes running or walking like

movements as shown in figure 7, the point of view in the virtual world will change as

if the users move in the real world, as represented in figure 8.

Figure 7. Running and Walking Posture

16

Figure 8. Changing Point of View

A Basic moving forward mechanism will be used in the unity studio. We will

use the key control in unity for moving forward by inputting button “w” for moving

forward. When the system detects the button input, the avatar will move also in

forward movement. Later, we will link the moving mechanism with speed control

feature to reflect more realistic movement by the user.

Both running and walking movement used the same starting position as

illustrated in figure 7, but the difference is with the speed of the joints movement. If

the system tracked the joints movement as fast, it means the user is considered as

running, vice versa.

3.3.2 Speed Control

The system will also have speed control for the running movement. Speed in

this context means the avatar speed of moving through the map. We can integrate the

velocity obtained from equation (1), (2), and (3) with the avatar speed by using f

variable in the unity. F variable is a float variable, and the value can be set as much

and as big as we want.

avg(l_knee) = ∑ 𝑓𝑖
𝑙_𝑘𝑛𝑒𝑒 − 𝑓𝑖−1

𝑙_𝑘𝑛𝑒𝑒
𝑛−1

𝑖=1

(1)

17

avg(l_knee) = ∑ 𝑓𝑖
𝑙_𝑘𝑛𝑒𝑒 − 𝑓𝑖−1

𝑙_𝑘𝑛𝑒𝑒
𝑛−1

𝑖=1

max (avg(l_knee), avg (r_knee)) (3)

First, we use depth-camera to track knee joints. Then, we calculate the

velocity of knee movements (x, y, z axis). We calculate the velocity by comparing the

position changes of those joints for each frame as illustrated in equation (1) and (2)

[4]. After acquiring velocity, we will take the maximum value from r_knee and

l_knee. In equation (1) and (2), f is frame, n is the number of buffer, and time is the

time taken by Kinect between frame i and frame i-1 to obtain skeleton data. The

velocity obtained will be used as speed control in the system, therefore the avatar’s

movement speed will be same with the velocity. We will not use the threshold value

presented in equation (3) because we only developed the speed calculation and not the

recognition between walking or running.

We will use knee movement as our input value because of human running

posture. In our system, the users do not run like in the real world, instead they will do

running in place movement. We observe that the knee is the part that will move the

most when people running in the real world. Consequently, knee joints are tracked by

our system and its changing during the time will be used as speed control input.

In Unity 3D studio, we can set the speed of a moving object by adding f as the

speed. If we set the object speed as 2f, the object will move 2 times the f variable. So,

we need to divide the velocity with the f value and set it into the moving object. For

example, we set the f with 3, then we obtain the velocity is 15, so we will get 15/3 = 5

from dividing velocity with f. Then we can use 5f to assign the speed into the moving

object. After acquiring the movement speed calculated by equation (1), we linked the

value with the moving forward mechanism. When the speed calculator produces

certain value of speed, it will be converted into another value and times it with the f in

the unity. So, the speed is constantly changing throughout the use and will follow

user’s hip movement.

(2)

18

Speed controller is added into the system to realize a realistic running support

system. Human run in certain speed in certain period and the speed is subject to

change due to various reasons. Integrating the speed into the system will provide more

realistic feeling to the user, so we can expect linear performances of duration using

our system with the benefit of running.

3.3.3 Horizontal Rotation

Another feature in the system is the horizontal rotation. This feature enables

the user to change his point of view in horizontal direction. Since we limit the space

of user in our system, we need another way to realize the horizontal movement. In this

case, the Horizontal rotation movement is produced by the user’s orientation toward

the depth-camera as shown in figure 9 (a).

Figure 9. User’s Orientation Toward Depth-Camera: (a) User facing Straight (b) User faces x degrees

toward the right side (c) User faces larger x and y degrees toward the right side

If the user wants to change the direction in the system, the user needs to

change direction toward the depth-camera. For example, as shown in figure 9 (b), if

the orientation exceeds x degrees, the point of view in the system will also change

toward that direction. This feature is designed to compensate the vast 3D map

environment with the limited space in the real world. By using this feature, the user

will able to change direction and explore another area without changing permanent

direction in real life. In this sense, the user will maintain his original position when

starting to run or walk again.

19

This feature will also have speed control of the movement. The user can

choose to rotate faster or slower depending on their orientation toward the depth-

camera. For example, on figure 9 (c), the user decides to change his direction toward

Kinect for y degrees. Compared to the previous degrees (x), the rotation will become

faster.

3.3.4 Posture Control

Posture control is a mechanism for comparing the user’s posture while running

with a standard. The feature will help the user maintain good posture while running,

such as asking the user to keep their legs higher while running so that the user will

feel exhausted, similar with running in real world.

The user’s body posture is captured by Kinect and we will set certain

algorithm to measure the position of body joints real time. For example, if the user’s

knee and hands were not in the correct position assumed for good running posture, the

system will add reminder in the screen so the user can correct their posture all the

time. Figure 10 illustrates the good posture and bad posture in running.

Figure 10. Good Posture (Left) and Bad Posture in Running (Right)

The system will remind the user of their posture by comparing with the

standard posture for running. In our system when the user makes bad posture as

illustrated in figure, the system will recognize the posture as bad and reminds the user.

For example, in figure the user’s running with arching back and is considered a bad

20

posture. The system will remind the user by popping a text in the head mounted

display as represented in figure 11.

Figure 11. Reminding User to Correct Their posture

3.4 Collision Control

Collision Control is a feature that will prevents the user to have a collision

with another object in the room and makes the user stay in the proper distance of

Kinect camera. We will use the depth data (z coordinates) of the user’s distance from

Kinect to their position, and x coordinates data to track the user’s movement relative

to the sensor in the room.

The system will recognize the distance between the user and another object. In

our research, we limited the area of the user movements into a square area of 1.5

meters squares as illustrated in figure 12. The limitation is meant to prevent the user

going out from the Kinect’s reading area and prevents the user from making collision

or injury by hitting with surrounding objects.

Figure 12. Moving Area in The Room

21

When the user’s position become to near around 0.5 m from the Kinect as

presented in figure, the system will warn the user to move slightly backward. At the

same time, if the user moves too far, the system will also warn the user to move

forward until they reach the original position. The warning will be presented by the

system in the head mounted display as illustrated in figure 13.

Figure 13. User Getting Too Near an Object in The Room

Figure 14. The System reminds the User to Move Backward

22

3.5 Head Mounted Display Setting

We use Samsung Gear VR for the head mounted display device. The unit

consisted of a smartphone and one head mounted display, as represented in figure 15.

The system is created in Unity 3D studio and built for the android device. After install

the system in the smartphone, we also use server-based interface for streaming the

data from Kinect to the android smartphone because between the computer and the

smartphone is not connected. The server based interface is presented in figure 16.

Figure 15. Samsung Gear VR Head Mounted Dsiplay

Figure 16. Server Streaming Kinect Data

23

The system is created with using Unity and all the devices must be connected

into the same WIFI Network. When we want to use the system, we must first connect

all the devices and run the server in the PC as represented in figure. We can also use

the same PC with the running application. The application .exe from figure must be

opened and run in the background. To realize this feature, we need to add some

feature to the unity so the system can stream the data into a server and linked with the

head-mounted display. Figure 17 represents the component in the system we can use

to set the server and client relationship in the system.

Figure 17. Sever-Client Component in Unity

3.6 Additional Interfaces

We also developed additional interfaces to the system. Additional information

such as time, distance, and speed will be presented on the head mounted display when

the user is using the system as shown in figure 18.

Figure 18. Running Performance Display

24

“Time” will indicate the duration of user using the system, “Distance” will

record the user’s running distance in the 3D map. “Speed” will be used for presenting

user’s running speed. Presenting several information about user’s running

performance will help to motivate the user and the user will also know their

performance. The user can decide when to correct their posture, increase their speed,

and set their own running target such as distance.

25

Chapter 4 System Implementation

In this chapter, we explain several important modules from our system. Modules

that needed detailed information will be presented including our way of

implementation.

4.1 Realistic 3D Map

Zenrin provides free 3D Map file downloadable through Unity Asset Store. The

original file contains several features such as presented below and presented in one

menu, as illustrated in figure 19.

Figure 19. Zenrin 3D Map Menu

1. Sky control : Control the weather in the system. We can change to sunny,

 cloud, and night by changing the lightning in the system.

Figure

 illustrates the differences, left side is the morning view and

the

 right figure 20 is the night view.

26

Figure 20. Different Weather Configuration

2. Shadow control : Turn on or off the shadow effect in the system. We can also

 adjust the time in the system by changing the shadow and

 lightning compared to periods of time in the day. Figure

 21 illustrates the difference between using shadow or without

 shadow. As we can see, by using shadow in figure (a)

provides

 better detail of the city.

Figure 21. Turning on Shadow Control (a) and Off (b)

3. Effect control : Add wind or rain feature in the system to provide more

realistic

 environment in everyday life. As we can see in figure 22,

zenrin

a b

27

 provides realistic environment by also adding rain feature so

 the user can enjoy the realistic environment similar with the

real

 world.

Figure 22. Rain Interface in The City Environment

4. Camera control : Change the starting point of view in the system. Zenrin

provides

 10 starting spots. As illustrated in figure 23, these are

examples

 of the point of view we can choose to see and observe things in

 the map. Several camera points of view have automatic move

 mechanism so the user can sit back and enjoy automatically.

Figure 23. Several Point of View Selections

28

5. Move control : Switch between normal, Fly Through, and Driving mode.

These

 modes linked with certain character or vehicle provided. As

 illustrated in figure 24, zenrin provides several modes so the

 user can explore the world.

Figure 24. Fly Through Mode (a) and Driving Mode (b)

In figure 24 (a), the avatar is moveable throughout the environment. We can

choose to move forward or stop, and we can also change the speed. The control is

provided, by using “z” button for decelerate, “x” button for accelerate, arrow key up

down left right to change direction. The scripting process for this feature is quite

complex and figure 25 represents a part of the script used for realizing this feature,

especially the moving mechanism.

29

Figure 25. Moving Avatar Code

In Figure 24 (b), user can observe the movement of the car automatically and get a

tour around the environment. Zenrin uses “navMesh” feature to set track for the car.

Figure 26 represents a part of the script used in this feature.

Figure 26. Car “NavMesh” Code

6. FPS : Observe the frame per second rate of the system. FPS feature

 can be used by the user to observe the

 frame rate of the system. The user can decide to use this

 information for their advantages. Figure 27 presents the code

 used for presenting the FPS in the zenrin map.

30

Figure. 27. FPS Code

Illustrated in figure 19, the original file produced several bugs and

incompatibilities with our environment such as missing asset link. We can see in the

map that the map is missing color for game object streets and came out as pink color

in the figure. To realize our own system, we need to solve the errors and revise the

original file.

First, we solve the error by adding several codes to the current file to fix the

shading problem. Next, we delete features that are not relevant to our system such as

sky control, shadow control, effect control, camera control, and move control. We

will use the FPS feature for calculation later. Several features in the original file relate

to each other, therefore we need to trace the link and edit it one at the time to prevent

bugs and errors.

After cleaning the file from the previous features, we can start to import another

asset such as the “Kinect v2 Examples with MS SDK” and install the avatar in our

system. We then change the “Main Camera” to the avatar point of view and the

current system is ready to use and we can add our own code, game object, and many

more. The main point of this step is how to delete the previous features asset without

damaging the core part of the system. Figure 28 illustrates the ready 3D map after

completing the editing part and figure 29 illustrates the combined avatar into the 3D

map.

31

Figure 28. Post-Edit 3D Map Asset

In figure 28, we can see that the issue had been fixed by adding additional

“UNITY_INITIALIZE_OUTPUT(Input,o); ” line into the asset script. The line is

functioned to link the environment city input each other.

Figure 29. Imported Avatar in the 3D Map

4.2 System Settings

We use several devices for implementing our system. We choose to use Kinect

depth-camera for capturing full-body skeletal data. We will use Samsung Gear VR as

head-mounted display for providing an immersive experience while using our system.

We will also use one unit computer with an Intel i7 processor, 8GB RAM, CPU speed

2.5 GHz. The system will be integrated with Unity and Microsoft Visual Studio for

scripting.

Several SDK will also be used for integrating all the devices. We will use

Microsoft Kinect for Windows SDK, Kinect Unity SDK and “Kinect v2 Examples

with MS-SDK”. After creating the system, we installed it to the HMD by using

32

server-based system that streams the Kinect data to the HMD in real time. Figure 30

shows the setup of the system.

Figure 30. System Setup

We use Unity 3D Studio for creating our system, including connecting all the

devices including Kinect Depth camera and Samsung Gear VR Head Mounted

Display. Therefore, the first step we need to do is connecting all the devices in the

Unity 3D Studio environment using several SDK. Figure 31 provides the illustration

of devices in our system.

33

Figure 31. Devices Relationship Illustration

Between Kinect Depth-Camera and PC we use several SDK, “Kinect for

Windows SDK 2.0” from the official Microsoft developer website, Kinect Unity

plugin and “Kinect v2 Examples with MS-SDK”. We downloaded those SDK and

plugins from the official website and then installed it.

“Kinect for Windows SDK 2.0” can be downloaded from

https://go.microsoft.com/fwlink/p/?LinkId=403899 for free. After downloaded, we

must install it in the computer and explore it features. There are various features in

this SDK, but the focus is we are using the “Coordinate Mapper” and “Depth” data

input to extract body joints and depth data for later use. After installing the SDK, we

will get access to “Kinect studio v2.0” that has the basic feature to see depth, infrared,

color, and 3D data. We can use this to do preliminary check of Kinect and record data

of Kinect reading. Figure 32 illustrates the SDK browser that we can use to choose

several examples of code and features from Kinect’s capability and figure 33

represents the “Kinect studio v2.0”.

https://go.microsoft.com/fwlink/p/?LinkId=403899

34

Figure 32. Kinect SDK Browser

Figure 33. Kinect studio v2.0

The next step is how to connect the Kinect SDK with Unity 3D studio so we can

use Kinect in the Unity environment. We would like to download “Kinect v2 Unity

Plugin” from this link https://go.microsoft.com/fwlink/p/?LinkId=513177. After

download the plugin, we integrate the plugin by importing it as “Custom Package” in

the Unity environment. Figure 34 illustrates the asset being imported.

https://go.microsoft.com/fwlink/p/?LinkId=513177

35

Figure 34. Kinect v2 Unity Plugin as Unity Package

The plugin provides several features such as the basic depth and body joints

recognition, face recognition, and speech. We will use the first feature and would like

to test it. We created unity sample application to check whether we can use the Kinect

and its data in unity environment or not. Figure represents the trial unity application

for checking the connectivity between Unity and Kinect camera. In figure 35 we can

see that we successfully use Kinect to track body data and presents it in the unity

environment.

Figure 35. Capturing Data Using Kinect in Unity

4.3 Body Movement as Input

36

The next part is how we are going to exploit the Kinect feature of capturing

body data into our system, in realistic 3D map. In our research, we decided to connect

Kinect with an avatar created in Unity environment. The avatar must possess body

joints that are similar with body joints tracked by using Kinect. After the model is

created, we then add some script using C# programming language within the Unity to

each of the avatar’s joints game object and connect it to the user’s body joints

captured by Kinect real-time.

In our research, we use “Kinect v2 Examples with MS-SDK” asset to ease the

connection of user’s body joints with the avatar. This asset provides us with the avatar

designed and integrated with each of body joints recognized by Kinect Microsoft

SDK. We import the asset into Unity and set the Kinect in position so the system can

recognize the user’s body movement. Although the asset provides good integration of

body joints and avatar, the avatar only able to move in very limited space with size

same in the real life. Figure 36 illustrates the avatar in the asset

Figure 36. Avatar Connected with User’s Body Joints

The white line block in the ground each represents 1 meter in real world, in

other word the movement space of this avatar is very limited. In our system, we

37

would like to explore wide range of environment, so we need to add several

adjustments to the avatar regarding with the movement area.

First, avatar integration with the user body should be done to move the avatar

by using user’s body movement. To realize this feature, the avatar created joint by

joint as illustrated in figure 37. Afterward, some script to control the avatar need to be

added in the unity. Figure 38 represents the component output in the avatar menu

presented in Unity.

Figure 37. Avatar Joints Structure

38

Figure 38. Avatar Component

By using this asset, we can achieve ease of integration between user body

joints and the avatar. The asset also requires the user to calibrate their pose by posing

like illustrated in figure 36. After the calibration, the system will match all the joints

with the user’s using data from Microsoft Kinect for Windows SDK.

4.3.1 Moving forward Mechanism

The avatar in the system acts as a game object in the unity and connected with

the user body. “Kinect v2 Examples with MS-SDK” provides the connectivity

between an avatar and user, but restricted in movement. The avatar corresponds with

limited moving area as represented in figure 36 with blocks on the floor. One block

represents 1 meter space in the real world, therefore if we want to move the avatar in a

big virtual world, we also need big spaces in the real world [5].

To avoid using too many spaces, we use a “virtual traveling techniques” to

cover and travel in such a large distance in the virtual environment [6]. This method

allows the user to exploit only small place for their movement. In our research, we

implement this method by making the user walking or running in place and the system

will recognize it as movement in the virtual environment.

One remaining problem is how to make the avatar moves all around the virtual

environment. In our research, we will use the basic First-Person Controller movement

in the Unity studio to create the basic moving forward mechanism. We will use an

GUI object from the Unity that can be moved by using keyboard key such as “w”.

When there is input of that button, the object will move in certain direction, as in our

research moving forward. We attached the avatar into a cube (GUI Object) at its feet

as illustrated in figure 39. We make the cube size so small barely seen, so we make as

like the avatar’s feet is touching the ground.

39

Figure 39. Attaching Avatar’s Feet with A Game Object

The next step is doing some scripting for making the cube attached avatar’s

feed moving. The script is basically making the object move by certain input. For

example, when the user hit “w” button in the keyboard, the cube will move forward.

The code is represented in figure 40.

Figure 40. First Person Controller Code

After finished adding the simple moving mechanism, we would like to connect

the cube with the speed control mechanism. Running speed acquired will make the

cube move in certain speed by assigning speed value in the code and times it with the

f variable in the unity. By using this method, we can make the avatar move in the

realistic map. We chose to use this approach because of the avatar cannot move

directly in a large area such as our realistic map.

40

4.3.2 Speed Control

Speed control obtained by using the speed data acquired from the equation (1)

as the movement speed in the virtual world. The system first need to calculate hip and

knee joint movement each frame and calculate its speed. The speed will be translated

into input movement for First-person controller attached to the avatar.

First, we need to get the position of the joints and tracked it in real-time

situation. We will track “central hip”, “left knee”, “right knee” to satisfy equation (1),

(2), (3), (4) and get the speed of the user’s. All the joints are available in Microsoft’s

official Kinect SDK and integrated with another SDK in our system. To get the

position of the joints, we use the code as represented in figure 41 and implemented it

for several joints as needed. Figure 42 illustrates the component in the avatar to

control which joint we want to track, etc.

Figure 41. Position Tracking Code

Figure 42. Avatar Joint Position Controller

41

Next, we will use the tracked joint and added it into equation (2) and (3)

respectively for each knee. After acquiring two values of speed for each knee, we use

equation (4) to get the maximum number from both of speeds. The largest number

will be used as our running speed. Figure 43 illustrates the tracked position: pos_x,

pos_y, and pos_z; and its speed: speed x, speed y, and speed z.

Figure 43. Tracked Joint and Speed Calculation

For example, we obtained the speed y for KneeRight on time 2.208 is 21.8235

and 20.0003 for KneeLeft on the same time. After applying equation (3), we then

conclude that the value 21.8235 is the speed of the user at that time. This data then

will be used to control the speed of avatar in our system.

After acquiring the speed, we can use the speed as input to the avatar moving

mechanism. The speed needed to be translated into unity configuration to get balance

speed within the system (pixel) and real speed (m/s). The value presented in figure 43

is calculated in cm/s and we want to convert it into m/s unit for convenient. The

method is to divide the value by 100 in the system and reduce the decimal number to

make it simpler.

The next step is we link the speed obtained to the GUI cube object moving

speed. This is done by adding the value of speed by our “running speed” variable

value. The information is presented in the unity window real-time as represented in

figure 44. The speed column will change according to the speed calculated by our

system.

Figure 44. Unity Object Movement Speed Control Window

42

The running speed obtained in our system represents not the whole accurate

speed of the user’s running activity. Restrictions and assumptions, such as detection

rate, joint tracking limitation, and devices specifications also play some roles in our

system development.

4.3.3 Horizontal Rotation

Horizontal Rotation feature provides the system with capability to turn right or

left and change direction of the user. There are lot of alternatives how to realize the

horizontal movement, but we chose to let the user facing the depth-camera and keep

their torso posture readable by the sensor. The sensor will then track the user’s torso

direction toward the sensor. If the user’s facing certain direction, the point of view

will also change to certain direction.

The features realized by making the user facing straight toward the depth-

camera as illustrated in figure. This method is chosen because the users tend to make

more accurate movement in exploring virtual world by translating the direction in

which the users are looking [7]. In our system, we assume and set certain limitation

due to the complexity and another prioritized feature. The users can only change their

direction after they stopped the running activity. We

To realize this feature, we must measure the quaternion and is represented as

Vector4 in the C# language. Quaternion is measured by calculating the rotation of the

joint around the x, y, and z axis. Initially, we acquire the spine positions (x, y, and z).

Next, we use the spine position to calculate the angle of movement such as illustrated

by figure 9 in subchapter 3.3.3.

Next, we would like to set certain threshold for control. If the user orientation

change to the right or left side more than the threshold value, we will change the point

of view of the system according to user’s direction. We set the threshold 45 degrees

so the system will not easily detect the user’s movement as command for changing

direction. When the angle value corresponds with the threshold, the system will

trigger the command to the GUI object attached to the avatar. We imbued the GUI

43

object with another command for mouse movement input and limit the moving axis

just for x axis. Another axis already covered by the head-mounted display setting for

looking around the environment. Figure 45 represents the core code for calculating

the quaternion angle.

Figure 45. Quaternion Calculation Code

4.3.4 Posture Control

We developed posture control feature to maintain the user’s posture while

running. User exercising alone may not be so clear for them how to maintain good

posture [9]. The aim of our research is to provide realistic running support system for

the user. We would like to exploit as many body movement as possible to make a

more realistic system.

The key point of good running posture is the tilt angle of the upper body [14].

If the user’s upper body posture is not properly done, the force produced when

running will not be effective and lower the running performance. To prevent the loss

44

of force and energy while running, we developed a posture control feature to

minimize this effect.

In our system the avatar and the users body joints are connected. We can

obtain the position of each body joint (x, y, and z) by using the SDK. After obtaining

the position, we will calculate this following angle:

1. Neck to head angle

2. Torso to neck angle

3. Angle between shoulders

We set thresholds within each calculation to keep the angle in certain position

so the users will run in good posture. The angle calculation is similar with calculating

the quaternion angle, we only need to adjust the equation variable.

4.4 Collision Control

As explained in chapter 3, collision control is designed to prevent the user

hitting another object. We use the depth camera to extract the distance between user

and object (in this case is the table we use for placing the depth-camera). We use the

length of a vector in a 3D case by using equation (4) as presented below.

 Equation (4)

 The next step is we need to convert the formula into C# language. The value

derived will be then compared with the threshold in our research (0.5) for meters.

Therefore, if the value is detected less than the threshold we will initiate the system to

give warning to the user to step back. Figure 46 illustrates the used code.

45

Figure 46. Calculating Distance Between User and Object

4.5 Additional Interfaces

We added several interfaces in our system such as “Time” and “speed”. All that

information is presented to inform the user about their performances when using our

system. In this section, we are going to explain several details of each section.

The time feature is done by using the stopwatch feature in the unity studio. We

create a UI text object, place in into the screen and add a script into the text. When the

user starts the system, the time will start calculating and stop when the user decided to

pause. We added C# script and attach it to UI text, as presented in figure 47.

Figure 47. “Time” Feature Code

46

The “speed” mode is acquired by presenting the speed acquired from the speed

control mechanism. This data is basically connected directly to the speed data derived

from equation (3). The scripting process is similar with time and distance interface,

we only need to change the data source with the “running speed” variable.

47

Chapter 5 Evaluation and Discussion

5.1 ISIPS Symposium 2017

In this research, we proposed to evaluate our system by qualitative evaluation.

Qualitative evaluation includes ISIPS Symposium 2017 by doing poster presentation

and getting feedbacks regarding our system. Responding the visitor’s questions and

feedbacks, we also had discussions and will be included in the following section.

We attended the ISIPS Symposium 2017 held by Waseda University IPS in

Kitakyushu Japan. In this event we presented a poster presentation and asks for

visitor’s opinion, feedbacks, and suggestions for our research. Figure 48 shows the

ISIPS Symposium event atmosphere.

Figure 48. ISIPS Symposium 2017

In this event, we set a poster in a panel board and several devices included one

unit laptop, Kinect depth-camera, and Samsung Gear VR Smartphone and Head

Mounted Display as represented in figure. Visitors then can try the demo version of

our research at the time. Interactive questions and answer session produces several

feedbacks that are very useful for our research.

48

There are lot of questions and suggestions obtained from the visitors, therefore we

need to summarize and evaluate each of the comments presented below.

a. “Maybe it’s better to add running belt below the user so will be more natural?”

The visitor mentioned about installing running belt below the user’s running

area. The image is like a treadmill on which the user will run above a rubber belt.

Through this comment, the user is emphasizing about the feedback from our

system. The visitor argues that by giving running belt, user will feel more natural

due to feedbacks from the running belt. Thus, the user running movement will be

more similar with running in real world.

 Giving running belt to provide feedback to the user is one possible alternative

that can be considered in our research. Although adding a running belt will not

cost too much and relatively easy to be done, we chose not to add a running belt

due to several considerations. The first consideration is that our system focus is

mainly in the use of human body movement as input. We are interested in using

the depth-camera to capture as much body movement as possible to provide a

realistic system.

 The second consideration is if we add running belt into our system, we will

reduce the mobility aspect of our system. It means that we would likely be

restricted in terms of our movement and control of the system. If the user wants to

move the system installment into another rooms or adapt the system into another

virtual world or platform, more adjustments must be made regarding the running

belt.

 Despite several advantages provided by adding running belt into our system,

we decided not to install the running belt because of its risk to reduce our system

adaptability and mobility.

b. “How to control the user from hitting table or another thing in the room?”

The visitor places her concern at the safety of the user. She argues that without

proper handling, user would likely to hit table or another object in the room. The

49

visitor also suggested to add features to control this behavior and minimize the

risk of user hitting objects and getting injuries.

We found this argument very interesting and helpful. Safety control is also

considered important in our system and realizing it also will be a challenge. After

some discussions and arguments with the visitor, we summarized the idea by

adding some limited area in the room and make the system tracks user position in

that area.

As presented in chapter 3 and 4, “Collision Control” is designed to prevent the

user for getting injuries and hitting another object in the room. We decided to add

this feature because of two reasons, the user’s safety and integration with depth-

camera. We wanted to use the depth-camera in our system to accommodate as

many features as possible. The depth data acquired from the camera makes it

easier to calculate distances between objects. Therefore, we can realize this

feature by using our devices.

c. “How to make sure the user runs in good manner is one problem, please

consider.”

The visitor argues that we need some control mechanism to make sure the

user’s running in good manner. If user’s not running in good posture, the system

will not be considered realistic because lack of aspect to influence the user to run

like in real life. We agreed with the visitor’s argument.

We decided to develop posture control which presented in chapter 3 and 4.

Posture control will keep the user running in good posture and at the same time

reminds the user to change their posture. The user will able to get the notification

from their head mounted display while using our system.

Posture control is considered important in our system and acting as bridge

with running in real world. Main concern regarding this research is the similarity

with real world running. The users are expecting by using this system, they will be

able to experience and get the same atmosphere. If the system cannot make the

user excited or exhausted, the reliability of the system is questionable. Thus, one

50

way to make sure that the user feels the same way is by checking their posture

from time to time.

d. “Why don’t you consider adding another feature such as heart rate so the user

performances can be improved?”

The visitor argues that it is better to add features such as heart rate recognizer

in the system. Heart rate recognition technology already realized and the

consumer product such as smart watches have already been sold in the market.

The availability of similar feature in the market makes this feature less important

in our research.

Our research mainly focuses on the computer science aspect rather than the

mechanical aspect. The research aim is to develop a running support system using

body movements. Body movements is used to track the user, connecting the user

with an avatar, and move the avatar in the 3D map. Heart rate on the hand, have

the possibility to make things more complicated and not related with our research.

Body movement tracking is realized by using Kinect depth-camera in our

system. Kinect tracks the body movements by locating body joints and mapped in

real-time. The connection between body joints movement and heart rate is not

direct and we cannot directly extract heart rate data just from the joints location.

Even if we develop certain algorithm to accommodate this feature, the result will

not be so satisfying and it would seem better to use the available devices in the

market.

e. “Another thing I think you should consider is how to evaluate the system and

analyze whether the system is helpful.”

The main question from a visitor is how to evaluate the system so we can

know that our system has benefits and give some influence on the user. The visitor

stated that our system was still lacked evaluation plan. In this matter, we spent

more time and discussing about our research’s evaluation plan.

51

There are two major evaluations sectors, qualitative evaluation and

quantitative evaluation. Qualitative evaluation will be done by asking

questionnaire and little interview with several participants about our system. We

will ask several potential users to try our system and then give some feedbacks.

This evaluation method will produce subjective feedbacks and related to the

design and interface of the system itself. Regarding the objective evaluation, will

be discussed with the quantitative evaluation.

Quantitative evaluation will be done by comparing the running speed of the

user while using our system with the real running. First, we will ask the user to

use our system and run for a designated period. Then we track their running speed

for those time. The next part, we asked the user to run in the similar environment

and measure their running speed. By comparing running speed, we can check the

similarity of our system with running in real life and whether our system is

supporting the user running activity or not.

52

Chapter 6 Related Works

6.1 Using Body Movements in VR System

The use of body movements has been used as method for controlling the VR

system in the past. Body movements mentioned in this manner is using body joints or

data based on body joints such as joints location changes [3]. The location changes

are tracked by certain devices and sensors, some divided per framework and some

done in real-time. This method is considered popular and used in various research due

to its simplicity and feasible to realize [6].

In the past, realizing this feature in real-time was difficult due of device

limitations [3]. However, after the development of Kinect, the users can run the

system with proper accuracy, robustness, and affordable. Kinect tracks several body

joints and translate it as depth-data, so the users can get the information its positions

in the real world. Shotton et. al. proposed the principles of Kinect Skeletal Tracker by

capturing single input depth image and infer a per-pixel body part distribution [11].

One example of system developed using Kinect is done by Tanaka and

Hirakawa [9]. The authors developed a training system using Kinect and head-

mounted display as illustrated in figure 50. The users can use the system for strength

training such as squat, push up, etc. When the users do certain posture, the system will

evaluate their postures and give additional feedbacks such as user performance and

posture condition as illustrated in figure 51.

Another main concern is how to implement a system based on a depth-camera

in a virtual environment. A VR environment sometime consists of vast and large size

of space, such as virtual world, virtual map, etc. Exploring this area requires similar

movement spaces in the real world, which will lead to using up too much spaces. To

solve this problem, [6] proposes using “virtual walking” method for minimizing the

required space. Wilson et. al. use “walking in place” method for realizing VR system

exploration [5].

53

In our research, we would like to develop a system that can recognize the

running motion from the users. Initially, we must define the parameters for good

running to improve the usability of our system. There are several criterions for

determining a good running posture, but the main point is the body angle [16]. The

body angle is a key point of force distribution. If the user’s body angle while running

defects from the proper running posture, then the users would likely to get low

performances. For minimizing this effect, several body angle controls are needed.

Taylor et. al. uses head, neck, shoulders, and hands angle to maintain the users

running posture [17].

6.2 Realistic 3D Map in VR System

The use of realistic 3D map in a VR system is implemented for fire evacuation

training system [4]. Sookhanaphibarn and Paliyawan use a university based virtual

environment in their system, so the users can walk around the area and train

themselves regarding evacuation process when a fire emerges.

In the game industry, there are various type of game that uses realistic 3D

environment [18]. Most of the environments are artificial environment for fictional

purpose. The availability of realistic 3D environment that is like the real-world

environment still quite low. On the other hand, Zenrin with its 3D Map asset in Unity

3D Studio provides vast and realistic environment of Japan’s cities. The availability

of realistic environment opens the possibilities for research to be done in various area.

54

Chapter 7 Conclusion

7.1 Summary

 We designed a running support system in a realistic 3D Map using body

movement as input. The user can explore the vast and detailed 3D map while running.

The next step is we will add more movements features in the system to realize more

realistic body movement tracking. We will compare the user’s speed while running

using our system running with running in real life. By comparing speed, we can prove

that our system can be used as alternative for running in real life.

7.2 Future Works

 In our research, we explored the use of depth-camera to capture realistic body

movement and implemented it to create a running support system in realistic 3D map.

During our work, we found several limitations and potential improvement points,

such as:

1. In the future, we can explore more body movements to be included in the

feature to provide more realistic experiences for the user

2. We will do thorough user testing to measure the system objectively

3. We can try to implement our system in different map platform such as google

street view and explore it benefits for the user

55

Acknowledgement

Special Thanks goes to Professor Tanaka for guiding me through my research from

the beginning until the end. His judgement, advices, and insights proven invaluable to

my research and my life as a Graduate School student in Waseda University IPS,

Japan.

Thank You also for my parents, several fund sources that had been kindly

supported me financially throughout the years. Without your help and supports, I

would not be able to graduate and focus my mind toward the goals.

To all my friends, especially IPLAB members who have been with me from the

beginning, IPLAB graduated members, and currently active IPLAB member, Thank

You for your support. Good luck for your future and let use keep our contact.

Lastly, I would like to Thank you all, people I have met up until today. You have

made my life full of precious stories, memories, and life-time experiences. I will not

forget all those lessons life has taught me and wish me luck for my following years.

56

REFERENCE

[1] Zenrin 3D Asset. http://www.zenrin.co.jp/product/service/3d/asset/

[2] A. Karina, T. Wada, and K. Tsukamoto, "Study on VR Sickness by Virtual

Reality Snowboard," Transactions of the Virtual Reality Society of Japan,

vol.11, no.2, pp.331-338, 2006.

[3] C.Subodha, "Real-Time Human Movement Mapping to a Virtual

Environment," Region 10 Symposium (TENSYMP), IEEE, pp. 150-154, 2016.

[4] K. Sookhanaphibarn and P. Paliyawan, "Virtual Reality System for Fire

Evacuation Training in a 3D Virtual World," IEEE 5thGlobal Conference on

Consumer Elevtronics, pp. 1-2, 2016.

[5] P. T. Wilson, K. Nguyen, A. Harris, B. Williams, "Walking in place using the

Microsoft Kinect to explore a large VE," SAP’13 Proceedings of the ACM

Symposium on Applied Perception, pp. 27-33, 2014.

[6] G. Bruder, F. Steninicke, "Implementing Walking in Virtual Environments,"

Human Walking in Virtual Environments, Springer Science+Business Media

New York, Chapter 10 pp. 227, 2013.

[7] B. Williams, M. McCaleb, et. al, "Torso versus Gaze Direction to Mavigate a

VE by Walking in Place," pp. 67-70, SAP 2013, ACM, 2013.

[8] K. Tollmar, D. Demirdijan, and T. Darrell, "Gesture + Play Exploring Full-

Body Navigation forVirtual Environments," Proceedings of the 2003 CVPRW.

pp. 1-8, 2003.

[9] Y. Tanaka and M. Hirakawa, "Efficient Strength Training in a Virtual World".

pp. 1-2, 2016 International Conference on Consumer Electronics-Taiwan,

IEEE, 2016.

[10] H. Sharp, Y. Rogers, and J. Preece, "Interaction Design: Beyond Human-

Computer Interaction". Wiley, 2007.

[11] J. Shotton, A. Fitzgibbon, M. Cook, et. al., "Real-Time Human Pose

Recognition in Parts from Single Depth Images," pp. 1297-1304, CVPR, 2011.

[12] F. Multon in F. Steinicke et al. (eds), "Human Walking in Virtual

Environments" (Chapter 8, "Sensing Human Walking: Algorithms and

57

Techniques for Extracting and Modeling Locomotion), Springer

Science+Business Media New York, 2013.

[13] Schellenbach M., Lovden M., Verrel J., Jruger A., Lindenberger U., "Adult

Age differences in familiarization to treadmill walking within virtual

environments". Gait Posture Vol 31 pp. 259-299, Elsevier, 2013.

[14] G. Bruder and F. Steinicke in F. Steinicke et al. (eds), "Human Walking in

Virtual Environments" (Chapter 10, "Implementing Walking in Virtual

Environments"), Springer Science+Business Media New York, 2013.

[15] L.H. Sloot, M.M. van der Krogt, J. Harlaar, "Effects of adding a virtual

environment to different modes of treadmill walking," Gait & Posture Vol. 39

pp. 939-945, Elsevier, 2014.

[16] Bolibar, J. "Kinect Audio-Runner: Audio Feedback for Improving Performance

in Long-Distance Running," Master of Science Thesis Stockholm, Sweden,

2012.

[17] Taylor B., Birk M., Mandryk R. L., Ivkovic Z. "Posture Training with Real-

time Visual Feedback". Proceedings CHI '13 Extended Abstracts on Human

Factors in Computing Systems, pp. 3135-3138, 2013.

[18] "From horror fest to shoot-'em ups, here are the 20 best Oculus Rift Game".

https://www.digitaltrends.com/gaming/best-oculus-rift-games/. Accessed 22nd

January 2018.

